
Week 1: Introduction to
Computation

POP77001 Computer Programming for Social Scientists

Tom Paskhalis

1



Overview
Computers and Computational thinking

Algorithms

Programming languages and computer programs

Debugging

Command-line Interfaces

Version controlling with Git/GitHub

2



Computers

1920s
2020s

3



Who Do Computers Do?
Two things:

1. Perform calculations

2. Store results of calculations

4



von Neumann Architecture

Central Processing Unit

Control Unit Arithmetic/Logic Unit

Memory Unit

Input Device Output Device

5



Computational Thinking
Conceptualizing, not programming - multiple levels of
abstraction

A way, that humans, not computers, think - creatively and
imaginatively

Complements and combines mathematical and engineering
thinking

Wing, Jeannette M. 2006. “Computational Thinking.”
Communications of the ACM, 49 (3): 33–35. doi:
10.1145/1118178.1118215

6

https://doi.org/10.1145/1118178.1118215


Computational Thinking
All knowledge can be thought of as:

1. Declarative (statement of fact)
E.g. square root of 25 equals 5

2. Imperative (how to)
E.g. to find a square root of x, start with a guess g, check
whether g*g is close, …

7



Algorithm

Finite list of well-defined instructions that take input and produce
output.

Consists of a sequence of simple steps that start from input,
follow some control flow and have a stopping rule.

8



Algorithm Example

Origami Club
9

https://en.origami-club.com/sea/enper-penguin/zu.html


Algorithm Example

Yes No

Calculate Median

Input array (a)

Sort a

Calculate length (n)

Find midpoint (m)

Does the remainder of

dividing n by 2 equal 1?

Return m of a
Return mean of

m and m+1 of a

10



Programming Language
Formal language used to define sequences of instructions (for
computers to execute) that includes:

Primitive constructs

Syntax

Static semantics

Semantics

11



Types of Programming Languages
Low-level vs high-level

E.g. available procedures for moving bits vs calculating a
mean

General vs application-domain

E.g. general-purpose vs statistical analysis

Interpreted vs compiled

Source code executed directly vs translated into machine
code

12



Primitive Constructs
Just like natural languages are made up of different elements such
as words and punctuation marks, programming languages are
composed of:

Literals

770011

'POP'1

Operators

+1

13

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf


Syntax
Defines which combinations of symbols form valid expressions.

E.g. in English “Animals drink water” is valid, while “Animals
water drink” isn’t.

While in Irish “Ó lann ainmhithe uisce” is valid, and “Ainmhithe
ó lann uisce” isn’t.

# Infix operator (used in most programming languages)1
77001 + 232

[1] 77024

# Prefix operator (used in Lisp-based programming languages)1
+ 77001 232

Error in parse(text = input): <text>:2:9: unexpected numeric constant
1: # Prefix operator (used in Lisp-based programming languages)
2: + 77001 23
           ^

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf


# Postfix operator (very rare in programming languages)1
77001 23 +2

Error in parse(text = input): <text>:2:7: unexpected numeric constant
1: # Postfix operator (very rare in programming languages)
2: 77001 23
         ^

14

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf


Static Semantics
Defines which syntactically valid sequences have a meaning

E.g. in English “Animals drunk water” is invalid, while
“Animals drank water” is.

R:
'POP' + '77001'1

Error in "POP" + "77001": non-numeric argument to binary operator

Python:
'POP' + '77001'1

'POP77001'

15

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf


Semantics in Programming
Languages

Associates a meaning with each syntactically correct sequence
of symbols that has no static semantic errors.

Programming languages are designed so that each legal program
has exactly one meaning.

This meaning, however, does not, necessarily, reflect the
intentions of the programmer.

Syntactic errors are much easier to detect.

16



Expressions & Statements
Text written in natural languages consists of certain
grammatical structures such as clauses and sentences.

Programs implemented in programming languages consist of:

Expressions - syntactic entities that may be evaluated to
determine a value.

77001 + 231

[1] 77024

Statements - syntactic entities that may be executed to
change a state.

x <- 77001 + 231

17

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf


Algorithms + Data Structures =
Programs

18



Computer Program
A collection of instructions that can be executed by computer to
perform a specific task

For interpreted languages (e.g. Python, R, Julia) instructions
(source code)

Can be executed directly in the interpreter

Can be stored and run from the terminal

19



Programming Errors
Often, programs would run with errors or behave in an
unexpected way

Programs might crash

They might run too long or indefinitely

Run to completion and produce an incorrect output

20



Computer Bugs

Grace Murray Hopper popularised the term bug after in 1947 her team traced an error in the
Mark II to a moth trapped in a relay.

US Naval History and Heritage Command
US Navy

21

https://www.history.navy.mil/content/history/nhhc/our-collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html
https://www.navy.mil/Women-In-the-Navy/Past/Display-Past-Woman-Bio/Article/2958917/rear-adm-grace-murray-hopper/


How to Debug
Search error message online (e.g.   or, indeed,

)

Insert print() statement to check the state between
procedures

Use built-in debugger (stepping through procedure as it
executes)

More to follow!

StackOverflow
#LMDDGTFY

22

https://stackoverflow.com/
https://lmddgtfy.net/


Command-line Interface
aka terminal/console/shell/command line/command prompt

Most users today rely on graphical interfaces.

Command line interpreters (CLIs) provide useful shortcuts.

Computer programs can be run or scheduled in terminal/CLI.

CLI/terminal is usually the only available interface if you work in the cloud (AWS,
Microsoft Azure, etc.).

Extra

Five reasons why researchers should learn to love the command line

23

https://www.nature.com/articles/d41586-021-00263-0


CLI Examples

Microsoft PowerShell
(Windows)

Z shell, zsh (macOS) bash (Linux/UNIX)

24



Some Useful CLI Commands
Command (Windows) Command (macOS/Linux) Description

exit exit close the window

cd cd change directory

cd pwd show current directory

dir ls list directories/files

copy cp copy file

move mv move/rename file

mkdir mkdir create a new directory

del rm delete a file

Extra

Introduction to CLI

25

https://tutorial.djangogirls.org/en/intro_to_command_line/


Version Control

Jorge Cham, PhD Comics

26

https://phdcomics.com/comics/archive.php?comicid=1531


Version Control and Git
Version control systems (VCSs) allow automatic tracking of
changes in files and collaboration.

Git is one of several major version control systems (VCSs, see
also Mercurial, Subversion).

 is an online hosting platform for projects that use Git
for version control.
GitHub

27

https://github.com/


Some Useful Git Commands
Command Description

git init <project name> Create a new local repository

git clone <project url> Download a project from remote repository

git status Check project status

git diff <file> Show changes between working directory and staging area

git add <file> Add a file to the staging area

git commit -m “<commit 
message>”

Create a new commit from changes added to the staging area

git pull <remote> <branch> Fetch changes from remote and merge into merge

git push <remote> <branch> Push local branch to remote repository

Extra

Git Cheatsheet

28

https://education.github.com/git-cheat-sheet-education.pdf


Things to Do
Make sure you have installed R, Python and Jupyter.

Make sure you can run R code through Jupyter (requires extra
steps).

Do the readings.

29



Things to Try (CLI)
Identify an appropriate CLI for your OS.

Try navigating across folders and files using CLI.

Try creating a test folder and test file inside it.

30



Things to Try (git)
Register on  and  (for free goodies!)

Create a test repository in CLI and initialise as a Git repository

Or create a repository on GitHub and clone to your local
machine

Create test.txt file, add it and commit

Push the file to GitHub

GitHub GitHub Education

31

https://github.com/
https://education.github.com/


Next
Tutorial: Jupyter Notebooks, CLIs, Git/GitHub

Next week: R Basics

32


