Week 1: Introduction to
Computation

POP77001 Computer Programming for Social Scientists

Tom Paskhalis

Overview

o Computers and Computational thinking

e Algorithms

e Programming languages and computer programs
e Debugging

e Command-line Interfaces

e Version controlling with Git/GitHub

Computers

1

0 __; '“/ x

— i | (' e jo
® COMPUTING &/ - | e LS s Sl
; DIVISION ,L,I L LR | ; "

coMPUTING I | g | He : (FRa ¢
secTion || | EREEEE | B -
. IR | 3y =

o b I

L

Na®

1920s

Who Do Computers Do?

Two things:

1. Perform calculations

2. Store results of calculations

von Neumann Architecture

Central Processing Unit

Control Unit Arithmetic/Logic Unit

Input Device Output Device

Memory Unit

Computational Thinking

o Conceptualizing, not programming - multiple levels of
abstraction

e A way, that humans, not computers, think - creatively and
imaginatively

o Complements and combines mathematical and engineering
thinking

Wing, Jeannette M. 2006. “Computational Thinking.”
Communications of the ACM, 49 (3): 33-35. dou:
10.1145/1118178.1118215

https://doi.org/10.1145/1118178.1118215

Computational Thinking

All knowledge can be thought of as:

1. Declarative (statement of fact)
E.g. square root of 25 equals 5

2. Imperative (how to)
E.g. to find a square root of x, start with a guess g, check
whether g*g 1s close, ...

Algorithm

o Finite list of well-defined instructions that take input and produce
output.

e Consists of a sequence of simple steps that start from input,
follow some control flow and have a stopping rule.

Algorithm Example

Fold

Fold backward
in the dotted line

2,

@Roll up

©

Turn over

Draw eyes
and finished

Paste yel low paper,
| Keep your feet level.

E E ORIGAMI CLUB
= 3 © For more origani diagrams

en. origami-club. com An EmperOI' Penguin
E " cCopyright:Fumiaki Shingu (Kid)

Origami Club

https://en.origami-club.com/sea/enper-penguin/zu.html

Algorithm E

xample

Calculate Median

|

Input array (a)

l

Sort a

l

Calculate length (n)

l

Find midpoint (m)

|

Does the remainder of
dividing n by 2 equal 1?

Yes No

l Return mean of
Return m of a
m and m+1 of a

10

Programming Language

Formal language used to define sequences of instructions (for
computers to execute) that includes:

e Primitive constructs
e Syntax
e Static semantics

e Semantics

11

Types of Programming Languages

e Low-level vs high-level

» E.g. available procedures for moving bits vs calculating a
mean

e General vs application-domain

» E.g. general-purpose vs statistical analysis

e Interpreted vs compiled

= Source code executed directly vs translated into machine
code

12

Primitive Constructs

Just like natural languages are made up of different elements such
as words and punctuation marks, programming languages are
composed of:

e [iterals

77001
'POP'

e Operators

+

13

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf

Syntax

e Defines which combinations of symbols form valid expressions.

e E.g. in English “Animals drink water” 1s valid, while “Animals
water drink” 1sn’t.

e While 1n Irish “Olann ainmhithe uisce” 1s valid, and “Ainmhithe
Olann uisce” 1sn’t.

Infix operator (used in most programming languages)
77001 + 23

[1] 77024

Prefix operator (used in Lisp-based programming languages)
+ 77001 23

Error in parse(text = input): <text>:2:9: unexpected numeric constant
1: # Prefix operator (used 1in Lisp-based programming languages)

2: + 77001 23
A

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf

Postfix operator (very rare 1n programming languages)
77001 23 +

Error in parse(text = input): <text>:2:7: unexpected numeric constant
1: # Postfix operator (very rare 1in programming languages)

2: 77001 23
A

14

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf

Static Semantics

e Defines which syntactically valid sequences have a meaning

e E.g. in English “Animals drunk water” 1s invalid, while
“Animals drank water” 1s.

R:

'POP' + '77001"

Error in "POP" + "77001": non-numeric argument to binary operator

Python:

'POP' + '77001'
'POP77001"'

15

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf

Semantics in Programming
Languages

e Associates a meaning with each syntactically correct sequence

of symbols that has no static semantic errors.

e Programming languages are designed so that each legal program
has exactly one meaning.

e This meaning, however, does not, necessarily, reflect the
intentions of the programmer.

e Syntactic errors are much easier to detect.

16

Expressions & Statements

e Text written 1n natural languages consists of certain
grammatical structures such as clauses and sentences.

e Programs implemented in programming languages consist of :

» Expressions - syntactic entities that may be evaluated to
determine a value.

77001 + 23
[1] 77024

= Statements - syntactic entities that may be executed to
change a state.

X <- 77001 + 23

17

http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf
http://127.0.0.1:3623/01b_lecture_computation.html?print-pdf

Algorithms + Data Structures =
Programs

18

Computer Program

e A collection of instructions that can be executed by computer to
perform a specific task

e For interpreted languages (e.g. Python, R, Julia) instructions
(source code)

= Can be executed directly 1n the interpreter

= Can be stored and run from the terminal

19

Programming Errors

e Often, programs would run with errors or behave in an
unexpected way

e Programs might crash
e They might run too long or indefinitely

e Run to completion and produce an incorrect output

20

Computer Bugs

je?
Yy

/4

D oo On Atann y"r»ﬂl’f,} {/~1]uu 9.037 s¥7 015
JJ0o ‘ «,wh.,;- "1 anﬂm . 5 Q037 §YC 95 covuih
137w (034 MP ~me LT =) Yer5725055 (-9

3y Pro 2. 13oyq0lyis

Cons ok z.rsn(_.ycy/::j bt
'Fu‘ml; G=2 heeliigaa /,,.J.J ¥
2 R
SQ/&HM

LAg= b"j"*.r*"J CDL\‘V\: T&P{_ (Sl‘\‘\ﬁ c.J'\¢x.k,

: '/
\Say” | B @z\w{"% Nan.| F
5 o \maﬂ.)’\ i r\‘\uu\ " '
__.'7 Lo o R : : m A h."l:kl*lll:‘ll w
Fiest actual cacse o4 b e ° .
reE /. o, bk >i:£J. i -{ % b m1 { wndk -

Juye 1—'701.,{ W %

_ _ US Navy
US Naval History and Heritage Command

Grace Murray Hopper popularised the term bug after in 1947 her team traced an error in the
Mark II to a moth trapped in a relay.

21

https://www.history.navy.mil/content/history/nhhc/our-collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html
https://www.navy.mil/Women-In-the-Navy/Past/Display-Past-Woman-Bio/Article/2958917/rear-adm-grace-murray-hopper/

How to Debug
e Search error message online (e.g. StackOverflow or, indeed,
#LMDDGTFY)

e Insert print () statement to check the state between
procedures

e Use built-in debugger (stepping through procedure as it
executes)

e More to follow!

22

https://stackoverflow.com/
https://lmddgtfy.net/

Command-line Interface

« aka terminal/console/shell/command line/command prompt

Most users today rely on graphical interfaces.

Command line interpreters (CLIs) provide useful shortcuts.

Computer programs can be run or scheduled in terminal/CLI.

CLI/terminal is usually the only available interface if you work in the cloud (AWS,
Microsoft Azure, etc.).

Q Extra

Five reasons why researchers should learn to love the command line

23

https://www.nature.com/articles/d41586-021-00263-0

CLI Examples

E¥ Windows PowerShell o
PS C:\Users\Public> mkdir test

Directory: C:\Users\Public

LasturiteTine Length Name

7/4/2022 12:21 PM test
Ps C:\Users\Public> cd test
Ps C:\Users\Public\test> 1s

Users\Public\test> git init

ed empty Git repository in C:/Users/Public/test/.git/
sers\Public\test> New-Item test.txt

Directory: C:\Users\Public\test

LasthriteTime Length Name

7/4/2022 12 © test.txt

sers\Public\test>

Microsoft PowerShell
(Windows)

[tashag — -zsh —109x34

Last login: Fri Sep 3 07:27:11 on console

(base) tashag@Natashas-MBP ~ % I

Z shell, zsh (macOYS)

M v tpaskhalis@thinkpad-t480: ~/test

$ git status
on branch master
No commits yet

Untracked files:
(use "git add <file>

" to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)
8 $ git add test.txt

$ git status

on branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

8 $ git comnit -n "Add first file"
[master (root-commit) cc31a88] Add first file

1 file changed, 1 insertion(+)
create mode 100644 test.txt

2e3c5d4b480 (
tpaskhalls <tpaskhalis@gnail.com>
Wed Apr 27 12:33:21 2022 +0100

Add first file

s il

bash (Linux/UNIX

24

Some Useful CLI Commands

Command (Windows)

Command (macOS/Linux)

Description

exit exit close the window

cd cd change directory

cd pwd show current directory
dir Ls list directories/files
copy cp copy file

move mv move/rename file
mkdir mkdir create a new directory
del rm delete a file

Q Extra

Introduction to CLI

25

https://tutorial.djangogirls.org/en/intro_to_command_line/

Version Control

Jorge Cham, PhD Comics

"FINAL doc

1 7
INAL _rev.6. COMMENTS. d FINAL _rev.8.commentsS.
FINAL _rev.6.COMMENTS. doc e CRasronerh

JORGE CHAM B 2012

‘ b
FINAL_rev.18.comments?. FlNAL..rev.z?..commgnTeH‘?.
corrections?.MORE.30.dot corrections.|0. #@$%WHYDID

WWW,.PHDCOMICS, COM

26

https://phdcomics.com/comics/archive.php?comicid=1531

Version Control and Git

 Version control systems (VCSs) allow automatic tracking of
changes 1n files and collaboration.

e (it 1s one of several major version control systems (VCSs, see
also Mercurial, Subversion).

e GitHub 1s an online hosting platform for projects that use Git
for version control.

27

https://github.com/

Some Useful Git Commands

Command

Description

git init <project name>

Create a new local repository

git clone <project url>

Download a project from remote repository

git status

Check project status

git diff <file>

Show changes between working directory and staging area

git add <file>

Add a file to the staging area

git commit -m “<commit
message>"

Create a new commit from changes added to the staging area

git pull <remote> <branch>

Fetch changes from remote and merge into merge

git push <remote> <branch>

Q Extra

Git Cheatsheet

Push local branch to remote repository

28

https://education.github.com/git-cheat-sheet-education.pdf

Things to Do

e Make sure you have installed R, Python and Jupyter.

e Make sure you can run R code through Jupyter (requires extra
steps).

e Do the readings.

29

Things to Try (CLI)

 Identify an appropriate CLI for your OS.
e Try navigating across folders and files using CLI.

e Try creating a test folder and test file nside it.

30

Things to Try (git)

e Register on GitHub and GitHub Education (for free goodies!)
e Create a test repository in CLI and 1nitialise as a Git repository

e Or create a repository on GitHub and clone to your local
machine

e Create test.txt file, add 1t and commit

e Push the file to GitHub

31

https://github.com/
https://education.github.com/

Next

e Tutorial: Jupyter Notebooks, CLIs, Git/GitHub

e Next week: R Basics

32

