Week 8: Fundamentals
of Python
Programming I

POP77001 Computer Programming for Social Scientists

Tom Paskhalis

Overview

e Python programs and their components
e Objects and operators

e Scalar and non-scalar types

e Indexing

e Methods and functions

Introduction to Python

5y 7 ' v >7 7 \\
’ \\\\\A\\ \V\\\\\M\\

/
\:\\\\\\\ y, g

\ \. VA
2! 4
\\N.\\\\ /

\ .\\
S/,
W)

W
7

7 i
‘mw\m. »
i

URE FLYING!

0

-~

S R/
‘V\VC\u
7 YL/ :
\\\\\\\\ ‘s

/)

HOW? &

7

i

D
E/

. 9D
—a¥ wmww ez
E—5.8z 22
5 gEgE-ck
> O A.Ih_mmm H o
I.vwclu “_W_nm Wnluw
T
= O<<
I..G.l. o~
IENEHIEETRS
A . W»HAW&E 2 2
gy Rgz38F =C
OC% wlPE3g Mw
=2=G Mw .SW =
vawm CW@N”N\
N/
R mvN\A
ENE
oE_. 2§
— & Q
g8¢ 2s
(= —~ 0O
AR
HZY I .a

xked

https://xkcd.com/353/
https://xkcd.com/353/

Python Background

e Started as a side-project in 1989 by Guido van Rossum, BDFL (benevolent dictator
for life) until 2018.

e Python 3, first released in 2008, is the current major version.

e Python 2 support stopped on 1 January 2020.

The Zen of Python

import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one —--obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea —-- let's do more of those!

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Python Basics

e Python is an interpreted language (like R and Stata).

e Every program is executed one command (aka statement)
at a time.

e Which also means that work can be done interactively.

'"POP' + '77001"
'"POP77001"

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Python Conceptual Hierarchy

e Python programs can be decomposed into modules,
statements, expressions, and objects, as follows:

1. Programs are composed of modules
2. Modules contain statements
3. Statements contain expressions

4. Expressions create and process objects

Python Objects

e Everything that Python operates on is an object.

e This includes numbers, strings, data structures,
functions, etc.

e Each object has a type (e.g. string or function) and
internal data

e Objects can be mutable (e.g. list) and immutable
(e.g. string)

10

Operations

Operators

e Objects and operators are combined to form expressions.
e Key operators are:

= Assignment (=, +=, -=, *=, /=)

s Arithmetic (+, -, *, **, /, //, %)

= Boolean (and, or, not)

Relational (==, ! =, >, >=, <, <=)

Membership (1n)

Mathematical Operations

Arithmetic operations:

1 +1
2
5 = 3
2
6 / 2
3.0
4 * 4
16
As in R, Python comments start with
Exponentiation
2 ** 4
16

Advanced mathematical operations:

Integer division (remainder is discarded)

7 // 3

Modulo operation (only remainder is retained)
7 % 3

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Logical Operations

1 3 !'= 1 # Not equal

True

1 3 > 3 # Greater than

False

1 3 >= 3 # Greater than or equal

True

1 # True if either first or second operand is True, False otherwise
2 # Analogous to R's | operator
3 False or True

True

1 # True if both first and second operand are True, False otherwise
2 # Analogous to R's & operator
35 False and True

False

1 3 > 3 or 3 > 3 # Combining 3 Boolean expressions

True

15

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Membership Operations

Operator 1n returns True if an object of the left side is in a
sequence on the right.

Strings are also sequences in Python
'a' in 'abc'

True

3 in [1, 2, 3] # [1,2,3] is a list
True

3 not in [1, 2, 3]

False

16

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Operator Precedence

Operator Description

(expressions...), Binding or parenthesized expression,
[expressions...], list display,

{key: value...}, dictionary display,

{expressions...} Set display

x[index], subscription,

x[index:index], slicing,

x(arguments...), call,

x.attribute Attribute reference

await x Await expression

** Exponentiation

+X, -X, ~X Positive, negative, bitwise NOT

@, /,//, % Multiplication, matrix multiplication, division, floor division, remainder
+, - Addition and subtraction

<<, >> Shifts

& Bitwise AND

A Bitwise XOR

| Bitwise OR

in,not in,is,is not, <, <=, >,>=, =, == Compearisons, including membership tests and identity tests
not x Boolean NOT

and Boolean AND

or Boolean OR

if — else Conditional expression

lambda Lambda expression

= Assignment expression

() Extra

Python Documentation on Operator Precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence

Assignment

Assignment Operations

e Assignments create object references.

e Target (or name) on the left is assigned to object on the right.

x = 3

X

X > El

Memory Address

x += 2 # Increment assignment, equivalent to x = x + 2

X

20

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Assignment vs Comparison
As = (assignment) and == (equality comparison) operators
appear very similar, they sometimes can create confusion.

X = 3 # Assignment
X
3
X == 3 # Equality comparison

True

21

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Object Types

Divisibility & Mutability
e In Python it is useful to think of objects storing:
s Individual values (scalars) or
= Sequences of elements
e Scalar objects are indivisible and immutable.
e Sequences can be both mutable and immutable.
e 4 main types of scalar objects in Python:
= Integer (1nt)
= Real number (f Loat)
= Boolean (bool)

= Null value (None)

24

Scalar Types

e All scalar types are indivisible and immutable

type (7)
<class 'int'>

type (3.14)
<class 'float'>

type (True)
<class 'bool'>

None is the only object of NoneType
type (None)

<class 'NoneType'>

e Scalar type conversion (casting) can be done using type names as functions:

int (3.14)

str(42)

l42'

25

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Non-scalar Types

e Non-scalar objects are all types of sequences.
e This allows indexing, slicing and other interesting operations.
e Most common sequences in Python are:

» String (str) - immutable ordered sequence of Unicode characters

Tuple (tup Le) - immutable ordered sequence of elements

List (L1ist) - mutable ordered sequence of elements

Set (set) - mutable unordered collection of unique elements

Dictionary (dict) - mutable unordered collection of key-value pairs

26

Sequences Example

s = '"time flies like a banana'

t = (0, 'one', 1, 2)

1 = [0, 'one', 1, 2]

o = {'apple', 'banana', 'watermelon'}

d = {'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}
type (s)

<class 'str'>

type (t)

<class 'tuple'>

type (1)

<class 'list'>

type (0)

<class 'set'>

type (d)

<class 'dict'>

27

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Working with Objects

Indexing and Subsetting in Python

e Indexing can be used to subset individual elements from
a sequence.

e Slicing can be used to extract sub-sequence of arbitrary
length.

e Use square brackets [| to supply the index (indices) ot
elements:

object [index]

30

Indexing in Python Starts from 0

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, SOME FROM ZERD.

DIFFERENT TASKS CALL FOR WAIT WHAT?
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGORITHAYS WELL, THATS WHAT HE
EXPERT DONALD KNUTH, SAID WHEN | ASKED
YOU GET IN MY HOUSE? /
/

xked

Q Extra

Why Python uses 0-based indexing by Guido van Rossum
Why numbering should start at zero by Edsger Dijkstra

https://xkcd.com/163/
https://python-history.blogspot.com/2013/10/why-python-uses-0-based-indexing.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
https://xkcd.com/163/
https://python-history.blogspot.com/2013/10/why-python-uses-0-based-indexing.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html

Subsetting Strings

S

'time flies like a banana'

Length of string (including whitespaces)

len(s)

24
Subset 1lst element (indexing in Python starts from zero!)
s [0]

Tpt

Subset all elements starting from 6th
s[5:]

'flies like a banana'

Strings can be concatenated together
S_l_'!'

'time flies like a banana!'

32

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Objects Have Methods

e Python objects have methods associated with them.

e They can be thought of function-like objects.

e However, their syntaxis object.method()

e Asopposed to function(object).

len(s) # Function

24

s.upper () # Method (makes string upper-case)

'TIME FLIES LIKE A BANANA'

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

String Methods

Some examples of methods available for strings:

Note that only the first character gets capitalized
s.capitalize ()

'Time flies like a banana'

Here we supply an argument 'sep' to our methods call
s.split(sep = " ")

['"time', 'flies', 'like', 'a', 'banana']

Arguments can also be matched by position, not just name
s.replace(' ', '-")

'"time—-flies-like—a—-banana'

Methods calls can be nested within each other
'-'.join(s.split(sep = " "))

'time—-flies—-like—a—-banana'

@ Extra

Python string methods

34

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
https://docs.python.org/3/library/stdtypes.html#string-methods
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
https://docs.python.org/3/library/stdtypes.html#string-methods

Method Chaining

e Methods can be chained together to perform multiple operations on the same
object.

e The output of one method becomes the input of the next method.

S

'time flies like a banana'

e Instead of applying string methods one by one, we can chain them together:

s.replace(' a ', ' an '").replace('banana', 'arrow') .capitalize () .split(sep = " ")

['Time', 'flies', 'like', 'an', 'arrow']
e For ease of reading, we can break the chain into multiple lines:

s_as_1 = (
S
.replace(' a ', ' an ')
.replace ('banana', 'arrow')
.capitalize ()
.split(sep = ' ")

)

s_as_1

['Time', 'flies', 'like', 'an', 'arrow']

35

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Tuples

Tuples can contain elements of different types:

('one', 1, 2)
Like strings tuples can be concatenated:

t + ('three', 5)

(0O, 'one', 1, 2, 'three', 5)

36

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Lists
Like tuples lists can contain elements of different types:

1
[0, 'one', 1, 2]

Unlike tuples lists are mutable:

Compare to tuple
t[l] =1

TypeError: 'tuple' object does not support item assignment

37

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Indexing and Slicing Lists

e Indexing and slicing lists (and other ordered sequences) is similar to using seq()
function in R.

e The general syntax for slicing in Python is seq[start:stop:step].

Note that the stop index is not included in the slice.

e If start or stop are omitted, they default to the beginning and end of the
sequence respectively.

If step is omitted, it defaults to 1.

38

Indexing and Slicing Lists:
Example

1

(0, 1, 1, 2]

Subset all elements starting from 2nd
1[1:]

(1, 1, 2]

Subset the last element

1[-1]
2
Subset every second element,
list[start:stop:step]
1[::2]
[0, 11

Subset all elements in reverse order
Lgeg=1]

(z, 1, 1, 0]

39

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Sets

1 o

{'apple', 'banana', 'watermelon'}

1 # Sets retain only unique values
2 {'apple', 'apple', 'banana', 'watermelon'}

{'apple', 'banana', 'watermelon'}

1 # Sets also have methods
2 o.difference ({'banana'})

{'apple', 'watermelon'}

1 # Some methods can be expressed as operators
2 o — {'banana'}

{'apple', 'watermelon'}

1 # Sets can be compared (e.g. one being subset of another)
2 {'apple'} < o

True

1 # Unlike strings, tuples and lists, sets are unordered
2 ol[1l]

TypeError: 'set' object is not subscriptable

40

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Dictionaries

key:value pair, fruit_name:average_weight
d

{'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}

Unlike strings, tuples and lists, dictionaries are indexed by 'keys'

d['apple']

150.0

Rather than integers
d[0]

KeyError: O

They are, however, mutable like lists and sets
d['strawberry'] = 12.0
d

{'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0, 'strawberry': 12.0}

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Conversion of Non-scalar Types

Tuple
t

(0, 'one', 1, 2)

Convert to list with a “list® function
list (t)

[0, 'one', 1, 2]

Conversion to set retains only unique values
set ([0, 1, 1, 21)

{0, 1, 2}

e List comprehension, a more Pythonic way of implementing loops and
conditionals, can also be used for converting sequences.

e It has the the general form of [expr for elem in iterable if test].

[x for x in t]
[0, 'one', 1, 2]

[x for x in t if type(x) != str]

42

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

None Value

e None is a Python null object.
e [t is often used to initialize objects.

¢ And it is a return value in some functions (more on that later).

Initialization of some temporary variable, which can re-assigned to another value later
none = None
none

Here we are initializing a list of length 10
none_1 = [None] * 10
none_1

[None, None, None, None, None, None, None, None, None, None]

Note the difference with R's NA
None == None

True

43

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Aliasing vs Copying in Python

e Assignment binds the name on the left of = sign to the object on the right.

e But the same object can have different names (aliases).

e If the expression on the right is a name, the name on the left becomes an alias.

e In R (almost) all objects behave the same as the vast majority are immutable.

e In Python the object’s type determines its behavior.

e Specifically, operations on immutable types overwrite the object if it gets modified.

e But for mutable types the object is modified in place.

44

Copying - Immutable Types

e Recall copy-on-modify semantics from R.

e Immutable types in Python behave similarly.

x = 'test' # Object of type string is assigned to variable " x°
id(x) # Function ~id" returns the memory address of the object

127083386354736

y = X # 'y 1s created an alias (alternative name) of "x°
id(y)

127083386354736

x = 'rest' # Another object of type string is assigned to “x°
X

'rest'’
id(x)
127083395212224
y
'test'
id(y)

127083386354736

45

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Copying - Mutable Types

e Mutable types in Python, however, behave differently.
e Changing the object modifies it in place without copying.

d
{'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0, 'strawberry': 12.0}

dl = d # Just an alias

d2 = d.copy() # Create a copy
dl['watermelon'] = 500 # Modify original dictionary
dl

{'apple': 150.0, 'banana': 120.0, 'watermelon': 500, 'strawberry': 12.0}

{'apple': 150.0, 'banana': 120.0, 'watermelon': 500, 'strawberry': 12.0}
dz2

{'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0, 'strawberry': 12.0}

46

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Summary of Built-in Object Types

) Extra

Type Description Scalar Mutability Order

int integer scalar immutable

float realnumber scalar immutable

bool Boolean scalar immutable

None Python ‘Null” scalar immutable

str string non-scalar immutable ordered
tuple tuple non-scalar immutable ordered
list list non-scalar mutable ordered
set set non-scalar mutable unordered
dict dictionary non-scalar mutable unordered

Python documentation on built-it types

47

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

Modules

e Python’s power lies in its extensibility.

e This is usually achieved by loading additional modules
(libraries).

e Module can be just a . py file that you import into your
program (script).

e However, often this refers to external libraries installed
using p1p or conda.

e Standard Python installation also includes a number of
modules (full list here).

48

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Basic Statistical Operations

e Unlike R, Python does not have built-in support for
statistical operations.

import statistics # Part of standard Python module
lst = [0, 1, 1, 2, 3, 5]

statistics.mean(lst) # Mean

2

statistics.median(lst) # Median
1.5

statistics.mode (lst) # Mode
1

statistics.stdev(lst) # Standard deviation

1.7888543819998317

49

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf

Help!

Python has an inbuilt help facility which provides more information about any
object:
invalid syntax (<string>, line 1)

help (s.join)

Help on built-in function join:

join (iterable, /) method of builtins.str instance
Concatenate any number of strings.

The string whose method is called is inserted in between each given string.
The result is returned as a new string.

Example: '.'.join(['ab', 'pq', 'rs'l) -> 'ab.pq.rs’
e The quality of the documentation varies hugely across libraries

e Stackoverflow is a good resource for many standard tasks

e For custom packages it is often helpful to check the issues page on the GitHub
e E.g. for pandas: https://github.com/pandas-dev/pandas/issues

e Or, indeed, any search engine #LMDDGTFY

50

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/08_week.html?print-pdf
https://stackoverflow.com/
https://github.com/
https://github.com/pandas-dev/pandas/issues
https://lmddgtfy.net/
https://stackoverflow.com/
https://github.com/
https://github.com/pandas-dev/pandas/issues
https://lmddgtfy.net/

Next

e Tutorial: Python objects, types and basic operations

e Next week: Control flow and functions in Python

51

