
Week 9: Fundamentals
of Python

Programming II
POP77001 Computer Programming for Social Scientists

Tom Paskhalis

1

Overview

• Control flow

• Conditional statements

• Loops and iteration

• Iterables

• List comprehensions

• Functions

2

Control Flow

4

Algorithm Flowchart

Yes No

Calculate Median

Input array (a)

Sort a

Calculate length (n)

Find midpoint (m)

Does the remainder of
dividing n by 2 equal 1?

Return m of a Return mean of m and m+1 of a

5

Algorithm Flowchart (Python)

True False

Calculate Median

a = [2, 0, 2, 1]

a.sort()

n = len(a)

m = (n + 1)//2

n % 2 == 1

a[m-1] sum(a[m-1:m+1])/2

6

Calculate Median
a = [2, 0, 2, 1] # Input list1

a.sort() # Sort list, note in-place modification2

a3

[0, 1, 2, 2]

n = len(a) # Calculate length of list 'a'1

n2

4

m = (n + 1)//2 # Calculate mid-point, // is operator for integer division 1

m2

2

n % 2 == 1 # % (modulo) gives remainder of division1

False

sum(a[m-1:m+1])/2 # Calculate median as the mean of the two numbers around the mid-point1

1.5

7

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Control Flow in Python
• Control flow is the order in which statements are executed or evaluated

• Main ways of control flow in Python:

▪ Branching (conditional) statements (e.g. if)

▪ Iteration (loops) (e.g. while, for)

▪ Function calls (e.g. len())

▪ Exceptions (e.g. TypeError)

Extra

Python documentation on control flow

8

https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/controlflow.html

Conditional
Statements

10

Branching Programs

True False

n % 2 == 1

a[m-1] sum(a[m-1:m+1])/2

11

Simple Conditional Statement

True

False

Test

Code if True

Code

12

Basic Conditional Statement: if
• if - defines condition under which some code is

executed

Note that addition of a large value (100)1

has no effect on the median.2

a = [2, 0, 2, 1, 100] 3

a.sort()4

n = len(a)5

m = (n + 1)//26

if n % 2 == 1:1

 a[m-1]2

2

if <boolean_expression>:

 <some_code>

13

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Complex Conditional Statements

True False

Test

Code if True Code if False

Code

14

if - else
• if - else - defines both condition under which some

code is executed and alternative code to execute

a = [2, 0, 2, 1]1

a.sort()2

n = len(a)3

m = (n + 1)//24

if n % 2 == 1:1

 a[m-1]2

else:3

sum(a[m-1:m+1])/24

1.5

if <boolean_expression>:

 <some_code>

else:

 <some_other_code>

15

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

if - elif - else
• if - elif - ... - else - defines both condition

under which some code is executed and several

alternatives

mark = 711

if mark >= 70:1

 grade = "I"2

elif mark >= 60:3

 grade = "II.1"4

elif mark >= 50:5

 grade = "II.2"6

else:7

 grade = "F"8

if <boolean_expression>:

 <some_code>

elif <boolean_expression>:

 <some_other_code>

...

...

else:

 <some_more_code>

grade1

'I'

16

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Indentation

• Indentation is semantically meaningful in Python.

• Visual structure of a program accurately represents its

semantic structure.

• Tabs and spaces should not be mixed.

• E.g. Jupyter Notebook converts tabs to spaces by default.

17

Indentation in Python
x = 431

if x % 2 == 0:2

'Even'3

if x > 0:4

'Positive'5

else:6

'Negative'7

x = 431

if x % 2 == 0:2

'Even'3

if x > 0:4

'Positive'5

else:6

'Negative'7

'Positive'

18

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Conditional Expressions

• Python supports conditional expressions as well as

conditional statements

<expr1> if <test> else <expr2>

x = 421

y = 'even' if x % 2 == 0 else 'odd'2

y3

'even'

Which is analogous to:

x = 421

if x % 2 == 0:2

 y = 'even'3

else:4

 y = 'odd'5

y6

'even'
19

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iteration

21

Loop

True

False

Test

Loop body

Code

22

while
• while - defines a condition under which some code

(loop body) is executed repeatedly

while <boolean_expression>:

 <some_code>

Calculate a factorial with decrementing function1

E.g. 5! = 1 * 2 * 3 * 4 * 5 = 1202

x = 53

factorial = 14

while x > 0:5

 factorial *= x # factorial = factorial * x6

 x -= 1 # x = x - 17

factorial8

120

23

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iteration: for
• for - defines elements and sequence over which some

code is executed iteratively

for <element> in <sequence>:

 <some_code>

x = range(1, 6)1

factorial = 12

for i in x:3

 factorial *= i4

factorial5

120

24

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iteration with Conditional
Statements

Find maximum value in a list with exhaustive enumeration1

l = [3, 27, 9, 42, 10, 2, 5]2

max_val = l[0]3

for i in l[1:]:4

if i > max_val:5

 max_val = i6

max_val7

42

25

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

range() Function
• range() function generates arithmetic progressions and is essential in for loops.

• In Python 3 range() is a generator function.

• It does not store all values at once (only start, stop and step).

• Rather it generates them on demand.

range(start, stop[, step])

r = range(3)1

r2

range(0, 3)

list(r)1

[0, 1, 2]

Extra

Python documentation for range()

Python documentation for generator functions

26

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/reference/datamodel.html?highlight=generator#generator-functions
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/reference/datamodel.html?highlight=generator#generator-functions

range() Function: Examples
l = [3, 27, 9, 42, 10, 2, 5]1

for i in range(len(l)):2

print(l[i], end = ' ')3

3 27 9 42 10 2 5

l = [3, 27, 9, 42, 10, 2, 5]1

s = []2

for i in range(1, len(l), 2):3

 s.append(str(l[i]))4

s5

['27', '42', '2']

27

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iterables

• Iterable is an object that generates one element at a item

within iteration.

• Formally, they are objects that have __iter__ method,

which return iterator.

• Some iterables are built-in (e.g. list, tuple, range()).

• But they can also be user-created.

28

Iteration over Multiple Iterables

• zip() function provides a convenient way of iterating

over several sequences simultaneously.

l = [3, 27, 9, 42]1

s = ['three', 'twenty seven', 'nine', 'forty-two']2

for i, j in zip(l, s):3

print(str(i) + ' - ' + j)4

3 - three

27 - twenty seven

9 - nine

42 - forty-two

Extra

Python documentation for zip()

29

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip

Iteration over Dictionaries
• Iterating over a dictionary yields its keys.

• Alternatively, you can use one of the applicable methods to iterate over:

▪ keys() - keys.

▪ values() - values.

▪ items() - key-value pairs.

d = {'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}1

for i in d:1

 i2

'apple'

'banana'

'watermelon'

for k, v in d.items():1

print(k.upper(), int(v))2

APPLE 150

BANANA 120

WATERMELON 3000

30

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iteration: break and continue
• break - terminates the loop in which it is contained

• continue - exits the iteration of a loop in which it is

contained

for i in range(1,6):1

if i % 2 == 0:2

break3

print(i)4

1

for i in range(1,6):1

if i % 2 == 0:2

continue3

print(i)4

1

3

5
31

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

List Comprehensions
• List comprehensions provide a concise way to apply an operation to each element

of a list.

• They offer a convenient and fast way of building list.

• Can have a nested structure (which affects legibility).

[<expr> for <elem> in <iterable>]

[<expr> for <elem> in <iterable> if <test>]

[<expr> for <elem1> in <iterable1> for <elem2> in <iterable2>]

l = [0, 'one', 1, 2]1

[x * 2 for x in l]1

[0, 'oneone', 2, 4]

[x * 2 for x in l if type(x) == int]1

[0, 2, 4]

[x.upper() for x in l if type(x) == str]1

['ONE']

Extra

Python documentation for list comprehensions

32

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

Set and Dictionary
Comprehensions

• Analogous to lists, sets and dictionaries have their own

concise ways of iterating over them:

{<expr> for <elem> in <iterable> if <test>}

{<key>: <value> for <elem1>, <elem2> in <iterable> if <test>}

o = {'apple', 'banana', 'watermelon'}1

{e[0].title() + ' - ' + e for e in o}2

{'W - watermelon', 'B - banana', 'A - apple'}

d = {'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}1

{k.upper(): int(v) for k, v in d.items()}2

{'APPLE': 150, 'BANANA': 120, 'WATERMELON': 3000}

33

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

More on Iterations

• Always make sure that the terminating condition for a

loop is properly specified.

• Nested loops can substantially slow down your program,

try to avoid them.

• Use break and continue to shorten iterations.

• Consolidate several loops into one whenever possible.

34

Functions

36

Built-in & User-defined
• Python has many built-in functions: len(), range(), zip().

• But its flexibility comes from functions defined by users.

• Many imported modules would contain their own functions.

• And many functions need to be implemented by the developer (i.e. you).

37

Function Definition
• Functions are defined using def statement.

• Variables are local to function definition in which they were assigned.

• Docstrings should be used to provide function overview (accessed with help()).

def <function_name>(arg_1, arg_2, ..., arg_n):

 """<docstring>"""

 <function_body>

def fun(arg):1

"""This function does nothing"""2

pass # does nothing, but is required as 'def' statement cannot be empty3

Extra

Python documentation on defining functions

38

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Function Definition: Example
def calculate_median(lst):1

"""Calculates median2

3

 Takes list as input4

 Assumes all elements of list are numeric5

 """6

 lst.sort()7

 n = len(lst)8

 m = (n + 1)//29

if n % 2 == 1:10

 median = lst[m-1]11

else:12

 median = sum(lst[m-1:m+1])/213

return median14

39

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Function Call
• Function is executed until:

▪ Either return statement is encountered

▪ There are no more expressions to evaluate

• Function call always returns a value:

▪ Value of expression following return

▪ None if no return statement

<function_name>(arg_1, arg_2, ...)

a = [2, 0, 2, 1]1

calculate_median(a)2

1.5

• Functions need to be defined before called

calculate_mean(a)1

NameError: name 'calculate_mean' is not defined

40

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Function Call: Example
def is_positive(num):1

if num > 0:2

return True3

elif num < 0:4

return False5

res1 = is_positive(5)1

res2 = is_positive(-7)2

res3 = is_positive(0)3

print(res1)1

True

print(res2)1

False

print(res3)1

None

41

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Function Arguments
• Arguments provide a way of giving input to a function.

• Arguments in function definition are sometimes called parameters.

• When a function is invoked (called) arguments are matched and bound to local

variable names

• Python bounds function arguments in 2 ways:

▪ by position (positional arguments)

▪ by keywords (keyword arguments)

• A keyword argument cannot be followed by a non-keyword argument

• Keyword arguments are often used together with default values

• Supplying default values makes arguments optional

42

Function Arguments: Example
def format_date(day, month, year, reverse = True):1

if reverse:2

return str(year) + '-' + str(month) + '-' + str(day)3

else:4

return str(day) + '-' + str(month) + '-' + str(year)5

format_date(4, 11, 2024)1

'2024-11-4'

format_date(day = 4, month = 11, year = 2024)1

'2024-11-4'

format_date(4, 11, 2024, False)1

'4-11-2024'

format_date(day = 4, month = 11, year = 2024, False)1

positional argument follows keyword argument (<string>, line 1)

43

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Variable Number of Arguments

• * in function definition collects unmatched position

arguments into a tuple.

• ** collects keyword arguments into a dictionary.

def foo(*args):1

print(args)2

foo(1, 'x', [5,6,10])1

(1, 'x', [5, 6, 10])

def foo(**kwargs):1

print(kwargs)2

foo(first = 1, second = 'x', third = [5,6,10])1

{'first': 1, 'second': 'x', 'third': [5, 6, 10]}

44

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Nested Functions
def which_integer(num):1

def even_or_odd(num):2

if num % 2 == 0:3

return 'even'4

else:5

return 'odd'6

if num > 0:7

 eo = even_or_odd(num)8

return 'positive ' + eo9

elif num < 0:10

 eo = even_or_odd(num)11

return 'negative ' + eo12

else:13

return 'zero'14

which_integer(-43)1

'negative odd'

even_or_odd(-43)1

NameError: name 'even_or_odd' is not defined

45

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Python Scope Basics
• Variables (aka names) exist in a namespace.

• This is where Python searches, when you refer to the object by its variable name.

• Location of first variable assignment determines its namespace (scope of

visibility).

x = 51

def foo():1

 x = 122

return x3

y = foo()1

print(y)2

12

print(x)1

5

46

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Scoping Levels in Python
• Variables can be assigned in 3 different places, that correspond to 3 different

scopes:

▪ local to the function, if a variable is assigned inside def

▪ nonlocal to nested function, if a variable is assigned in an enclosing def

▪ global to the file (module), when a variable is assigned outside all defs

47

Built-in (Python)

Global (module)

Enclosing function

Local (function)

Names assigned within a function
(e.g. def or lambda) that were not

declared global in that function

Lambda Functions
• Anonymous function objects can be created with lambda expression.

• It can appear in places, where defining function is not allowed by Python syntax.

• E.g. as arguments in higher-order functions, return values, etc.

lambda arg_1, arg_2,... arg_n: <some_expression>

function definition with `def` always binds function object to a name1

def add_excl(s):2

return s + '!'3

4

add_excl('Function')5

'Function!'

typically, lambda function would not be assigned to a name1

add_excl = lambda s: s + '!'2

3

add_excl('Lambda')4

'Lambda!'

48

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Lambda Function: Example
import math1

2

def make_scaler(scale = 'linear'):3

if scale == 'linear':4

return lambda x: x5

elif scale == 'log':6

return lambda x: math.log(x) if x > 0 else float('-inf')7

else:8

raise ValueError('Unknown scale')9

`log_scaler` is a function object that is yet to be invoked1

log_scaler = make_scaler(scale = 'log')2

log_scaler(10)1

2.302585092994046

[log_scaler(x) for x in range(10)] # More Pythonic1

[-inf, 0.0, 0.6931471805599453, 1.0986122886681098, 1.3862943611198906, 1.6094379124341003, 1.791759469228055,

1.9459101490553132, 2.0794415416798357, 2.1972245773362196]

More functional in style, similar to R's:1

mapply(function(x) log(x), 0:9)2

unlist(Map(function(x) log(x), 0:9))3

but a lot more abstruse in Python4

list(map(lambda x: math.log(x) if x > 0 else float('-inf'), range(10)))5

[-inf, 0.0, 0.6931471805599453, 1.0986122886681098, 1.3862943611198906, 1.6094379124341003, 1.791759469228055,

1.9459101490553132, 2.0794415416798357, 2.1972245773362196]

49

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Recursion

Reddit

50

https://www.reddit.com/r/ProgrammerHumor/comments/pvke5n/the_art_of_recursion/
https://www.reddit.com/r/ProgrammerHumor/comments/pvke5n/the_art_of_recursion/

Recursion in Programming

• Functions that call themselves are called recursive

functions

• It consists of 2 parts that prevent if from being a circular

solution:

1. Base case, specifies the result of a special case

2. General case, defines answer in terms of answer om

some other input

51

Recursion: Example

• Factorial function:

▪ Base case: 1! = 1

▪ General case: n! = n * (n-1)!

def factorial(x):1

"""Calculates factorial of x!2

3

 Takes one integer as an input4

 Returns the factorial of that integer5

 """6

if x == 1:7

return x8

else:9

return x * factorial(x-1)10

factorial(5)1

120
52

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Function Design Principles

• Function should have a single, cohesive purpose

▪ Check if you could give it a short descriptive name

• Function should be relatively small

• Use arguments for input and return for output

▪ Avoid writing to global variables

• Change mutable objects only if a caller expects it

53

Modules
• Module is .py file with Python definitions and statements.

• Program can access functionality of a module using import statement.

• Module is imported only once per interpreter session.

• Every module has its own namespace.

import <module_name>

<module_name>.<object_name>

import <module_name> as <new_name>

<new_name>.<object_name>

from <module_name> import <object_name>

<object_name>

54

Module Import: Example
import statistics # Import all objects from module `statistics`1

from math import sqrt # Import only function `sqrt` from module `math`2

fib = [0, 1, 1, 2, 3, 5]1

statistics.mean(fib) # Mean1

2

statistics.median(fib) # Median1

1.5

sqrt(25) # Square root1

5.0

55

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Some Built-in Python Modules
Module Description

datetime Date and time types

math Mathematical functions

random Random numbers generation

statistics Statistical functions

os.path Pathname manipulations

re Regular expressions

pdb Python Debugger

timeit Measure execution time of small code snippets

csv CSV file reading and writing

pickle Python object serialization (backup)

Extra

Python documentation for the Python Standard Library

56

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Next

• Tutorial: Control flow and functions

• Assignment 3: Due at 12:00 on Monday, 11th November

(submission on Blackboard)

• Next week: Data wrangling in Python

57

