Week 9: Fundamentals
of Python
Programming 11

POP77001 Computer Programming for Social Scientists

Tom Paskhalis

Overview

o Control flow

e Conditional statements
e Loops and iteration

o Iterables

e List comprehensions

e Functions

Control Flow

Algorithm Flowchart

Calculate Median

v
Input array (a)

v

Sort a

\ 4
Calculate length (n)

l

Find midpoint (m)

l

Does the remainder of
dividing n by 2 equal 1?

Yes No

v

Return m of a Return mean of m and m+1 of a

Algorithm Flowchart (Python)

Calculate Median

Calculate Median

a= [2, 0, 2, 1] # Input list
a.sort () # Sort list, note in-place modification
a
[0, 1, 2, 2]
n = len(a) # Calculate length of list 'a'
n
4
m = (n + 1)//2 # Calculate mid-point, // is operator for integer division
m
2
n$ 2 ==14# % (modulo) gives remainder of division l
False

sum(a[m-1:m+1])/2 # Calculate median as the mean of the two numbers around

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Control Flow in Python

e Control flow is the order in which statements are executed or evaluated
e Main ways of control flow in Python:

» Branching (conditional) statements (e.g. 1T)

= Jteration (loops) (e.g. while, for)

» Function calls (e.g. Len())

= Exceptions (e.g. TypeError)

Extra

Python documentation on control flow

https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/controlflow.html

Conditional
Statements

Branching Programs

l

n%2-==1

/N

True False

v v

a[m-1] sum(a[m-1:m+1])/2

11

Simple Conditional Statement

Basic Conditional Statement: 1f

e 1T - defines condition under which some code is
executed

Note that addition of a large value (100)

has no effect on the median.

a= [2, 0, 2, 1, 100]

a.sort ()

n = len(a)

m= (n+ 1)//2

ifn% 2 == 1: if <boolean_expression>:
a[m—1] <some_ code>

13

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Complex Conditional Statements

l
Ti / \F l
P

Code if True Code if False

N

1f - else

e 1T - else - defines both condition under which some
code is executed and alternative code to execute

a = [2, 0, 2, 1]

a.sort ()

n = len(a)

m= (n+ 1)//2

ifn % 2 == 1: if <boolean_expression>:
a[m-1] <some__code>

else: else:

sum (a[m-1:m+1]) /2 <some_other_ code>

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

1f - elif - else

e 1f - elif - ... - else -defines both condition
under which some code is executed and several
alternatives

mark = 71

if mark >= 70: if <boolean_expression>:
grade = "I" <some_code>

elif mark >= 60: elif <boolean_expression>:
grade = "II.1" <some_other_code>

elif mark >= 50:
grade = "II.2"
else:

else:

<some_more_code>
grade = "F"

grade

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Indentation

Indentation is semantically meaningful in Python.

Visual structure of a program accurately represents its
semantic structure.

Tabs and spaces should not be mixed.

E.g. Jupyter Notebook converts tabs to spaces by default.

17

Indentation in Python

X = 43
if x $ 2 == 0:
'Even'
if x > 0:
'Positive'
else:
'Negative'

X = 43

if x 5 2 == 0:
'Even'

if x > 0:
'Positive'

else:
'Negative'

'Positive'

18

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Conditional Expressions

e Python supports conditional expressions as well as
conditional statements

<exprl> 1f <test> else <expr2>

X = 42
y = 'even' if x 5 2 == 0 else 'odd'
Yy

'even'

Which is analogous to:

X = 42
if x $ 2 == 0:
y = 'even'
else:
y = 'odd
Yy

'even'

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iteration

Loop

&

True

4

Loop body

False

22

while

e wWhile - defines a condition under which some code
(loop body) is executed repeatedly

while <boolean_expression>:
<some_code>

Calculate a factorial with decrementing function
E.g. 5! =1 * 2 * 3 * 4 * 5 =120
x =5
factorial =1
while x > 0:
factorial *= x # factorial = factorial * x
Xx =1 4# x=x -1
factorial

120

23

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iteration: for

e for - defines elements and sequence over which some
code is executed iteratively

for <element> in <sequence>:
<some_code>

X = range(l, 6)

factorial = 1

for i in x:
factorial *= 1

factorial

120

24

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iteration with Conditional
Statements

Find maximum value in a list with exhaustive enumeration
1 =13, 27, 9, 42, 10, 2, 5]
max_val = 1[0]
for i in 1[1:]:
if i > max_val:
max_val = 1

max_val

42

25

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

range() Function

e range() function generates arithmetic progressions and is essential in Tor loops.
e In Python 3 range() is a generator function.

e It does not store all values at once (only start, stop and step).

e Rather it generates them on demand.

range (start, stop[, stepl)

r = range (3)
r

range (0, 3)

list (r)

() Extra
A4

Python documentation for range()

Python documentation for generator functions

26

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/reference/datamodel.html?highlight=generator#generator-functions
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/reference/datamodel.html?highlight=generator#generator-functions

range() Function: Examples

1= 13, 27, 9, 42, 10, 2, 5]
for i in range(len(l)):
print (1[i], end = " ")

3 27 9 42 10 2 5

1
S

(3, 27, 9, 42, 10, 2, 5]
[]

for i in range(l, len(l), 2):

s.append(str (1[i]))
S

[1271, |42', 12|]

27

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iterables

Iterable is an object that generates one element at a item
within iteration.

Formally, they are objects that have __1ter__ method,

which return iterator.
Some iterables are built-in (e.g. list, tuple, range()).

But they can also be user-created.

28

Iteration over Multiple Iterables

e 71p() function provides a convenient way of iterating
over several sequences simultaneously.

1
S

[3, 27, 9, 42]
['three', 'twenty seven', 'nine', 'forty-two']

for i, j in zip(l, s):

print (str(i) + ' — ' + 7J)
3 — three
27 — twenty seven
9 — nine

42 - forty—-two

v Extra

Python documentation for zip()

29

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip

Iteration over Dictionaries

e [terating over a dictionary yields its keys.

o Alternatively, you can use one of the applicable methods to iterate over:
= keys() - keys.
= values() - values.
= items() - key-value pairs.

d = {'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}

for i in d:
i
'apple'

'banana'
'watermelon'

for k, v in d.items () :
print (k.upper (), int (v))

APPLE 150
BANANA 120
WATERMELON 3000

30

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Iteration: break and continue

e break - terminates the loop in which it is contained

e continue - exits the iteration of a loop in which it is
contained

for i in range(1l,6):
if i $ 2 == 0:
break
print (1)

for i in range(1l,6):
if i $ 2 == 0:
continue
print (1)

w

31

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

List Comprehensions

e List comprehensions provide a concise way to apply an operation to each element
of a list.

e They offer a convenient and fast way of building list.

e Can have a nested structure (which affects legibility .=).

[<expr> for <elem> in <iterable>]
[<expr> for <elem> in <iterable> if <test>]
[<expr> for <eleml> in <iterablel> for <elem2> in <iterable2>]

1 = [0, 'one', 1, 2]
[x * 2 for x in 1]

[0, 'oneone', 2, 4]

[x * 2 for x in 1 if type(x) == int]
[0, 2, 4]

[Xx.upper () for x in 1 if type(x) == str]
["ONE']

Extra

Python documentation for list comprehensions

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

Set and Dictionary
Comprehensions

e Analogous to lists, sets and dictionaries have their own
concise ways of iterating over them:

{<expr> for <elem> in <iterable> if <test>}
{<key>: <value> for <eleml>, <elem2> in <iterable> if <test>}

o = {'apple', 'banana', 'watermelon'}
{e[0].title() + " — " + e for e in o}
{'W — watermelon', 'B - banana', 'A - apple'}

d = {'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}
{k.upper(): int(v) for k, v in d.items ()}

{'"APPLE': 150, 'BANANA': 120, 'WATERMELON': 3000}

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

More on Iterations

e Always make sure that the terminating condition for a
loop is properly specified.

e Nested loops can substantially slow down your program,
try to avoid them.

e Use break and continue to shorten iterations.

e Consolidate several loops into one whenever possible.

34

Functions

Built-in & User-defined

e Python has many built-in functions: Llen(), range(), zip().
e But its flexibility comes from functions defined by users.
e Many imported modules would contain their own functions.

e And many functions need to be implemented by the developer (i.e. you).

37

Function Definition

e Functions are defined using def statement.
e Variables are local to function definition in which they were assigned.

e Docstrings should be used to provide function overview (accessed with he Lp()).

def <function_name> (arg_1l, arg_2, ..., arg_n):
mman <dOCStrlng> mman
<function_body>

def fun (arg):
"""This function does nothing"""

pass # does nothing, but is required as 'def' statement cannot be empty

() Extra

Python documentation on defining functions

38

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Function Definition: Example

def calculate _median(lst):
"""Calculates median

Takes 1list as input

Assumes all elements of list are numeric
nun

lst.sort ()

n = len(lst)

m= (n + 1)//2

if n $ 2 ==
median = lst[m—-1]
else:
median = sum(lst[m-1:m+1]) /2

return median

39

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Function Call

e Function is executed until:

» FEither return statement is encountered

= There are no more expressions to evaluate
e Function call always returns a value:

= Value of expression following return

m None if no return statement

<function_name> (arg_1l, arg_2, ...)

a = [2, 0, 2, 1]
calculate_median (a)

1.5

e Functions need to be defined before called

calculate_mean (a)

NameError: name 'calculate_mean' is not defined

40

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Function Call: Example

def is_positive (num) :
if num > O:
return True
elif num < O:
return False

resl = 1is_positive (5)
res2 = is_positive (=7)
res3 = 1s_positive (0)

print (resl)

True

print (res2)

False

print (res3)

None

41

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Function Arguments

Arguments provide a way of giving input to a function.
Arguments in function definition are sometimes called parameters.

When a function is invoked (called) arguments are matched and bound to local
variable names

Python bounds function arguments in 2 ways:

= by position (positional arguments)

» by keywords (keyword arguments)
A keyword argument cannot be followed by a non-keyword argument
Keyword arguments are often used together with default values

Supplying default values makes arguments optional

42

Function Arguments: Example

def format_date (day, month, year, reverse = True):
if reverse:
return str (year) + '-' + str(month) + '-' + str(day)
else:
return str(day) + '-' + str(month) + '-' + str(year)

format_date (4, 11, 2024)
'2024-11-4"

format_date(day = 4, month = 11, year = 2024)
'2024-11-4"

format_date (4, 11, 2024, False)
'4-11-2024"

format_date(day = 4, month = 11, year = 2024, False)

positional argument follows keyword argument (<string>, line 1)

43

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Variable Number of Arguments

e *in function definition collects unmatched position
arguments into a tuple.

e ** collects keyword arguments into a dictionary.

def foo(*args):
print (args)

foo(l, 'x', [5,6,10])
(L, 'x', [5, 6, 10])

def foo (**kwargs) :
print (kwargs)

foo(first = 1, second = 'x', third = [5,6,10])

{'"first': 1, 'second': 'x', 'third': [5, 6, 10]}

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Nested Functions

def which_integer (num) :
def even_or_odd (num) :
if num % 2 ==
return 'even'

else:

return 'odd'

if num > O:

eo = even_or_odd (num)

return 'positive

elif num < O:

+ eo

eo = even_or_odd (num)

return 'negative

else:
return 'zero'

which_integer (—43)
'negative odd'

even_or_odd(—43)

NameError: name 'even_or_odd'

+ eo

is not defined

45

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Python Scope Basics

e Variables (aka names) exist in a namespace.

e This is where Python searches, when you refer to the object by its variable name.

e Location of first variable assignment determines its namespace (scope of
visibility).

x =5
def foo () :
x = 12
return x
y = fool()
print (y)

12

print (x)

46

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Scoping Levels in Python

e Variables can be assigned in 3 different places, that correspond to 3 different
scopes:

= Local to the function, if a variable is assigned inside def
= nonlocal to nested function, if a variable is assigned in an enclosing def

= global to the file (module), when a variable is assigned outside all defs

47

Built-in (Python)

Global (module)

Enclosing function

Local (function)

Names assigned within a function
(e.g. def or lambda) that were not
declared global in that function

Lambda Functions

e Anonymous function objects can be created with Lambda expression.

e It can appear in places, where defining function is not allowed by Python syntax.
e E.g as arguments in higher-order functions, return values, etc.

lambda arg_1, arg_2,... arg_n: <some_expression>

function definition with “def’ always binds function object to a name
def add_excl(s):

return s + '!'

add_excl ('Function')

'Function!'

typically, lambda function would not be assigned to a name
add_excl = lambda s: s + '!'!

add_excl ('Lambda')

'Lambda!"’

48

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Lambda Function: Example

import math

def make_scaler (scale = 'linear'):
if scale == 'linear':
return lambda x: x
elif scale == 'log':
return lambda x: math.log(x) if x > 0 else float('—-inf')
else:

raise ValueError ('Unknown scale')

“log_scaler® 1s a function object that is yet to be invoked
log_scaler = make_scaler (scale = '"log')

log_scaler (10)

2.302585092994046

[log_scaler (x) for x in range(10)] # More Pythonic

[-inf, 0.0, 0.6931471805599453, 1.0986122886681098, 1.3862943611198906, 1.6094379124341003, 1.791759469228055,
1.9459101490553132, 2.0794415416798357, 2.1972245773362196]

More functional in style, similar to R's:
mapply (function (x) log(x), 0:9)

but a lot more abstruse in Python

#

#

unlist (Map (function(x) log(x), 0:9))

#

list (map (lambda x: math.log(x) if x > 0 else float('-inf'), range(10)))

[-inf, 0.0, 0.6931471805599453, 1.0986122886681098, 1.3862943611198906, 1.6094379124341003, 1.791759469228055,
1.9459101490553132, 2.0794415416798357, 2.1972245773362196]

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Recursion

o B

<liend: "What's recursion?”

5

Me: "Do you have an avocado?”

Reddit

50

https://www.reddit.com/r/ProgrammerHumor/comments/pvke5n/the_art_of_recursion/
https://www.reddit.com/r/ProgrammerHumor/comments/pvke5n/the_art_of_recursion/

Recursion in Programming

e Functions that call themselves are called recursive
functions

e [t consists of 2 parts that prevent if from being a circular
solution:

1. Base case, specifies the result of a special case

2. General case, defines answer in terms of answer om
some other input

51

Recursion: Example

e Factorial function:
m Basecase: 1! =1
s General case:n! =n * (n-1)!

def factorial (x):
"""Calculates factorial of x!

Takes one integer as an input
Returns the factorial of that integer
nun
if x == 1:
return x
else:
return x * factorial (x-1)

factorial (5)

120
52

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Function Design Principles

e Function should have a single, cohesive purpose

= Check if you could give it a short descriptive name
e Function should be relatively small
e Use arguments for input and return for output

= Avoid writing to global variables

e Change mutable objects only if a caller expects it

53

Modules

e Module is . py file with Python definitions and statements.
e Program can access functionality of a module using 1mpor t statement.
e Module is imported only once per interpreter session.

e Every module has its own namespace.

import <module_name>
<module_name>.<object_name>

import <module_name> as <new_name>
<new_name>.<object_name>

from <module_name> import <object_name>
<object_name>

54

Module Import: Example

import statistics # Import all objects from module "statistics"
from math import sqgrt # Import only function "sgrt® from module “math’

fib = [0, 1, 1, 2, 3, 5]

statistics.mean (fib) # Mean

statistics.median (fib) # Median

sgrt (25) # Square root

55

file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP77001_Computer_Programming/lectures/09_week.html?print-pdf

Some Built-in Python Modules

Module Description

datetime Date and time types

math Mathematical functions
random Random numbers generation

statistics Statistical functions

os.path Pathname manipulations

re Regular expressions

pdb Python Debugger

timeit Measure execution time of small code snippets
CSV CSV file reading and writing

pickle Python object serialization (backup)

(“‘) Extra
\i.'

Python documentation for the Python Standard Library

56

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Next

e Tutorial: Control flow and functions

e Assignment 3: Due at 12:00 on Monday, 11th November
(submission on Blackboard)

e Next week: Data wrangling in Python

57

