
Week 1 Tutorial:
Introduction to Jupyter,

CLI, Git
POP77001 Computer Programming for Social Scientists

1

Integrated Development Enviroments
(IDEs)

There is a number of integrated development environments
(IDEs) available for:

R (RStudio) and

Python (Spyder, PyCharm)

As well as text editors with R/Python-specific extensions
(Visual Studio Code, Sublime Text, Vim)

Try different ones and choose what works best for you!

2

Jupyter Notebook
 is a language-agnostic web-based interactive

computational environment.

It is available with backends (kernels) for different programming
languages (Julia, Python, R = Jupyter)

Can be used both locally and remotely.

Combine both code (with comments) and code output.

Good for ad-hoc data analysis and visualization.

Jupyter Notebook

3

https://jupyter-notebook.readthedocs.io/en/latest/

Jupyter Notebook vs Scripts
Written code is often distributed as scripts:

.R files - R scripts

.py files - Python scripts

Scripts are easier to work with in text editor.

But do not include output.

4

Jupyter Notebook Cells
Notebooks allow writing, executing and viewing the output of
Python code within the same environment

All notebook files have .ipynb extension for interactive python
notebook

The main unit of notebook is cell, a text input field (Python,
Markdown, HTML)

Output of a cell can include text, table or figure

5

Jupyter Notebook Installation
To work with Jupyter Notebooks we recommend installing , a cross-
platform desktop application for Jupyter Notebooks.

Alternatively, you can try using , an online platform for hosting Jupyter
Notebooks.

Its interface is slightly different and you need to register on Kaggle or have a Google
account, but it does not require any local installations.

However, for this module and course more broadly we recommend installing toolchain for
working with Jupyter Notebooks locally.

JupyterLab Desktop

Kaggle Code

6

https://github.com/jupyterlab/jupyterlab-desktop
https://www.kaggle.com/code

Starting Jupyter
To start Jupyter, open CLI/Terminal and type jupyter notebook

This will open a browser window with Jupyter Notebook displaying the directory, in which
you executed the command above.

To create a new notebook press New and select Python from the drop-down menu

7

Using Jupyter
In order to run a Python command, create a new cell:

Press ➕ in the toolbar or click Insert, Insert Cell Below

Make sure that in the drop-down menu on the toolbar you select Code

Press CTRL+ENTER to run a command

Rather than running a Python command, you can also write Markdown in the cell (e.g. to
create slides)

Select Markdown in the drop-down menu on the toolbar

Write Markdown (check)

Press CTRL+ENTER to render Markdown cell

Markdown Cheatsheet

8

https://enterprise.github.com/downloads/en/markdown-cheatsheet.pdf

Jupyter Notebook Demonstration

9

Jupyter Notebook Demonstration

10

Stopping Jupyter Notebook
First, make sure you saved your work (!) by pressing Command+S / CTRL+S

You can close the running notebook by clicking File and then Close and Halt

Jupyter Notebook runs as a server

Which means that closing its tabs/web browser does not stop it

You need to press Quit in the upper right corner of your main Jupyter tab (located at
http://localhost:8888/)

Alternatively, you can press CTRL+C in the terminal window

11

CLI Examples

Microsoft PowerShell
(Windows)

Z shell, zsh (macOS) bash (Linux/UNIX)

12

Some Useful CLI Commands
Command (Windows) Command (macOS/Linux) Description

exit exit close the window

cd cd change directory

cd pwd show current directory

dir ls list directories/files

copy cp copy file

move mv move/rename file

mkdir mkdir create a new directory

del rm delete a file

Extra

Introduction to CLI

13

https://tutorial.djangogirls.org/en/intro_to_command_line/

Git/GitHub Workflow

14

Some Useful Git Commands
Command Description

git init <project name> Create a new local repository

git clone <project url> Download a project from remote repository

git status Check project status

git diff <file> Show changes between working directory and staging area

git add <file> Add a file to the staging area

git commit -m “<commit
message>”

Create a new commit from changes added to the staging area

git pull <remote> <branch> Fetch changes from remote and merge into merge

git push <remote> <branch> Push local branch to remote repository

Extra

Git Cheatsheet

15

https://education.github.com/git-cheat-sheet-education.pdf

Creating local Git repository
Let’s create a test project and track changes in it

Create a test directory by typing mkdir test in your CLI/Terminal

Go into the newly created directory with cd test command

To make Git track changes run git init command in this directory

Congratulations! You now have a local repository for your test project

16

Making a Commit
Open your text editor of choice (Notepad, Sublime Text, Visual Studio Code, Vim, Emacs, …)

Create a file called test.txt in your local test repository

Type whatever you like in this file

Add this file to your staging area (make Git aware of its existence) by running git add test.txt
command

Commit this file to your local repository by running git commit -m "Added first file"

Note that all files that were added at the previous stage with git add <file> would be commited

Check the status of your repository by running git status (it should say ‘nothing to commit,
working tree clean’)

Check the history of your repository by running git log and make sure that you see your commit

17

Remote Git repository: GitHub

Hosting platform for projects that rely on Git fo version control

Bought by Microsoft in 2018

Provides extensive tools for collaborative development and search functionality

Helpful for troubleshooting more narrow problems (check of the
package/library that you have a problem with)

GitHub is far from the only platform for hosting Git projects

Popular alternatives to GitHub include (🇺🇦), , …

GitHub Issues

GitLab SourceForge

18

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://about.gitlab.com/
https://sourceforge.net/

Creating remote repository on GitHub
Register and login into your account on GitHub

Create a (choose private repository)

You should see a similar page with the project URL of the form:

new GitHub repository

https://github.com/<username>/<repository_name>.git

19

https://github.com/new

Synchronising local Git repository
with GitHub

Go to your local Git repository (the one created in the previous step)

Add link from your local Git repository to remote repository on GitHub by running:

Check the status of links between your local Git repository and remotes by running git
remote -v

where:

git remote is the command, and

-v is the argument ‘verbose’

git remote add origin <project_url>

- where:
 - `git remote add` is the command,
 - `origin` is the name given to this link (`<remote>`), and
 - `<project_url>` is the URL of the repository on GitHub

20

Pushing local Git changes to GitHub
Your local Git repository is now linked to the remote repository hosted on GitHub.

Let’s bring the changes made locally to the remote repository.

We will use the git push command for that.

One last thing to check before doing so is which branch we are currently on.

Run git branch to see the name of the branch you are on (it would be ‘main’ or ‘master’)

Finally, run git push <remote> <branch> (e.g. git push origin main)

where:

git push is the command,

<remote> is the name of the remote link, and

<branch> is the name of the branch.

Visit your GitHub repository to check that your commit is reflected there.

21

Week 1 Exercise (Unassessed)
Create a Jupyter notebook in your local repository

Commit it to your local repository in the same way as
test.txt file

22

