Week 2 Tutorial:
R Basics

POP77001 Computer Programming for Social Scientists

R and development environments

e There 1s some choice of integrated development environments
(IDEs) for R (StatET, ESS, R Commander)

e However, over the last decade RStudio became the de factor
standard IDE for working in R

e You can also find R extensions for your favourite text editor
(Atom, Sublime Text, Visual Studio Code, Vim)

e For the purposes of consistency with Python part of the module,
we will be using Jupyter with R.

Running R in Jupyter

« In order to be able to run R kernel in Jupyter, you need to install package IRkerne L:
= Open R (in the terminal) or RStudio:
= Run install.packages("IRkernel") to install the package
= Wait until the package is installed
= Run IRkernel: :installspec() to initialize R kernel for Jupyter

= Now you should be able to launch or edit a notebook with R kernel

Tip: When starting working with R in Jupyter run options(jupyter.rich_display

= FALSE) command to switch off pretty printing and get the output (albeit less neat)
consistent with output in RStudio

TIRkernel

Package IRkerne L is required to run R in Jupyter Notebook.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> install.packages("IRkernel")

Installing package into °/home/tpaskhalis/R/x86_64-pc-linux-gnu-library/4.1’
(as ‘lib’ is unspecified)

trying URL '"https://cloud.r-project.org/src/contrib/IRkernel_1.2.tar.gz'
Content type 'application/x-gzip' length 62663 bytes (61 KB)

downloaded 61 KB

* installing *source* package ‘IRkernel’ ...

** package ‘IRkernel’ successfully unpacked and MD5 sums checked

** ysing staged installation

**R

** {nst

** byte-compile and prepare package for lazy loading

** help

***% {nstalling help indices

** huilding package indices

% testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location

** testing if installed package keeps a record of temporary installation path
* DONE (IRkernel)

The downloaded source packages are in
* /tmp/RtmpnK5Pss/downloaded_packages”’
> IRkernel::installspec()
[InstallKernelSpec] Removing existing kernelspec in /home/tpaskhalis/.local/share/jupyter/kernels/ir
[InstallKernelSpec] Installed kernelspec ir in /home/tpaskhalis/.local/share/jupyter/kernels/ir

>

JupyterLab

File Edit View

= EENN -

JupyterLab

Kernel Tabs Settings Help

1+ c [4 Launcher aF

I Filter files by name

B/ Test/
.— | Name
»
(=
Simple

- Modified

A

Python 3 Julia 1.10.0 R

(ipykernel)

Console

A o

oo ‘R

Python 3 Julia 1.10.0 R
(ipykernel)
Other
— M [
== v o0

Terminal Text File Markdown File Julia File

CMmo @

A

Python File

& venv: spyderenv = — [0 X

v

@ Launcher 0 A

JupyterLab Demonstration

JupyterLab = venv:spyder-env = — [X

File Edit View Run Kernel Tabs Settings Help

[4 Launcher +
- + o %

| Filter Files by name Q

programming £
8 / programming /

Name - Modified IE Notebook

" ? co @

=] Python 3 Julia 1.10.0 R
(ipykernel)

Console

@ o @

Python 3 Julia 1.10.0 R
(ipykernel)

Other

S =
= v o0
Terminal Text File Markdown File lulia File Python File

-

Simple 0 B 0 & @ Launcher 0 Q

Code Distribution

More often than not you want to record how analysis was

performed.

There are 3 principal ways of distributing R code:
e R script (. R file)
e R Markdown/Quarto (. Rmd/. gmd file)
e Jupyter Notebook (. 1pynb file)

R Script

e The most straightforward way to keep track of your R code.
e Instead of writing your R commands in the interactive console,
e You put them 1n a script and run then together or one at a time.

e Can contain a mix of valid R commands and comments (lines
starting with #).

e Easy to edit and integrate into larger projects.

Markdown formatting basics

« Use _ or * for emphasis (single - italic, double - bold, triple - bold and italic)
= *one* becomesone, two -twoand ***three*** - three

« Headers or decreasing levels follow #, ##, ###, ###+# and so on

o (Unordered) Lists follow marker -, + or *
= Start at the left-most position for top-level
= Indent four space and use another marker for nesting like here

e (Numbered) Lists use 1 . (counter is auto-incremented)

o Links have syntax of [some text here](url_here)

» Images similarly: ! [alt text](url or path to image)

Markdown vs R Markdown

e Markdown:
= Easy-to-read and easy-to-write plain text format;
= Separates content from its appearance (rendition);
= Widely used across industry sectors and academic fields;
= . md file extension.
o R Markdown (Quarto):
= Allows combining of R commands with regular text;
= Compiles into PDF/DOC/HTML and other formats;
= Can be converted into slide deck or even website!

= . Rmd file extension (. qmd for Quarto).

Extra

Ch 27: R Markdown in Wickham & Grolemund 2017

10

https://r4ds.had.co.nz/r-markdown.html

R Markdown

R Markdown Rendering

¥ Title Title
Some text in *italic* and **bold** Some text in italic and bold
Simple list: Simple list:
N .« A
- B . B
Ordered list: .
Ordered list:
1. A
1. B 1. A
2.B

Example, where $Y i = 5 + X 1 + \epsilon$
S r) Example, where Y; =5+ X; + ¢
X—l N 3 Al €= 3
epSilOI’I <- rl’lorm(l) e;silon <- rnorm(1l)

. . . y i <=5+ x i + epsilon
y 1 <=5+ x 1 + epsilon . -

y_i
i
YT\ [1] 9.685856

http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf

Naming conventions

« Even while allowed in R, do not use . in variable names (it works as an object attribute in
Python)

« Do not name give objects the names of existing functions and variables (e.g. c, T, L1st,
mean)

« Use UPPER_CASE_WITH_UNDERSCORE for named constants (e.g. variables that
remain fixed and unmodified)

o Use lower case with underscores for function and variable names

Extra

The tidyverse style guide

12

https://style.tidyverse.org/

Code layout

e L.imit all lines to a maximum of 79 characters.

e Break up longer lines

my long vector <- c((

l’
22,

23,

42,

25 By

24,
43,

4,

25,
44,

26,
45,

27,
40,

28,
47,

9,

29,
48,

L@,

30,
49,

long_function_name <- function (a

b
C

As usual code is indented by

11,

S,
50,

12, 13, 14, 15,

32,
51,

33,
52,

34,
53,

35,
54,

"a long argument",
"another argument",

L&,

36,
55,

17,

37
56,

"another long argument") {
two spaces.

16,

38,
57,

19,

39,
58,

20,

40,
59,

21,

41,
60

13

Reserved words

There are ~14 reserved words 1in R that cannot be used as names assigned to objects.

break NA
else NaN
FALSE next
for NULL

function repeat
if TRUE
Inf while

Q Extra

R reserved words

14

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html

Exercise 1: Vector subsetting

Load built-in R object Letters (lower-case letters of the Roman alphabet)

Calculate its length

Generate a vector of integers that starts from 1 and has the same length as Lletters

Assign to each integer corresponding lower-case letter as its name
« Use these names to subset all vowels

« Now, repeat the subsetting, but using indices rather than names

Tip: You can use function which () for determining the indices of vowels

letters

[l] "a" "b" "C" "d" "e" "f" "g" "h" "i" "j " "k" "l" "m" "n" "O" "p" "q" "r" "S"
[20] "t" "u" "v" "w" "X" "y" "Z"

15

http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf

Tabulation & Crosstabulation

« R function tab le() provides an easy way of summarizing categorical variables

« Note that variables represented as character vectors are implicitly converted to factors

Top 10 most populous settlements on the island of Ireland
https://en.wikipedia.org/wiki/List of settlements on the island of Ireland by population
top 10 settlements <- c(

"Dublin", "Belfast", "Cork", "Limerick", "Derry",

"Galway", "Newtownabbey", "Bangor", "Waterford", "Lisburn"

)

Corresponding provinces

provinces <- c(
"Leinster", "Ulster", "Munster", "Munster", "Ulster",
"Connacht", "Ulster", "Ulster", "Munster", "Ulster"

16

http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf

Tabulation & Crosstabulation

Given that each town appears only once, cross-tabulation might not be the most informative
table(top 10 settlements, provinces)

provinces
top 10 settlements Connacht Leinster Munster Ulster
Bangor 0 0 0 1
Belfast 0 0 0 1
Cork 0 0 1 0
Derry 0 0 0 1
Dublin 0 1 0 0
Galway 1 0 0 0
Limerick 0 0 1 0
Lisburn 0 0 0 1
Newtownabbey 0 0 0 1
Waterford 0 0 1 0

Instead, we can just get tabulate the "provinces vector
and check the value counts for each province
table (provinces)

provinces
Connacht Leinster Munster Ulster
1 1 3 5

http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf

Exercise 2: Working with Factors

As you note the output of table(provinces) is sorted alphabetically

Change this to reflect the actual counts

First, let’s store the result of tabulation for later re-use

Start from exploring the structure of this object with str ()

What are the 2 main parts of this object? How are they stored?

Extract the relevant parts from the stored object

Save them as a named vector with provinces as names and counts as values

Use sort () function to sort the vector in a decreasing order (from largest to smallest)

Convert the original provinces vector into a factor with the levels ordered accordingly

Re-run table(provinces)

tab <- table (provinces)

18

http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf
http://127.0.0.1:5846/02_week.html?print-pdf

Week 2 Exercise (unassessed)

« Save a Letters object under a different name

Convert saved object into a matrix of 13 rows and 2 columns

Subset letter ‘f” using indices

Concatenate 3 copies of Letters object together in a single character vector

Convert it into a 3-dimensional array, where each dimension appears as a matrix above

Subset all letters ‘f” across all 3 dimensions

19

