POP77001 Computer Programming for Social Scientists
| Duration (in seconds) | Q2 | Q3 | Q4 | Q5 | Q6_1 | Q6_2 | Q6_3 | Q6_4 | Q6_5 | ... | Q44_3 | Q44_4 | Q44_5 | Q44_6 | Q44_7 | Q44_8 | Q44_9 | Q44_10 | Q44_11 | Q44_12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 121 | 30-34 | Man | India | No | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1 rows × 296 columns
| Duration (in seconds) | Q2 | Q3 | Q4 | Q5 | Q6_1 | Q6_2 | Q6_3 | Q6_4 | Q6_5 | ... | Q44_3 | Q44_4 | Q44_5 | Q44_6 | Q44_7 | Q44_8 | Q44_9 | Q44_10 | Q44_11 | Q44_12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | Duration (in seconds) | What is your age (# years)? | What is your gender? - Selected Choice | In which country do you currently reside? | Are you currently a student? (high school, uni... | On which platforms have you begun or completed... | On which platforms have you begun or completed... | On which platforms have you begun or completed... | On which platforms have you begun or completed... | On which platforms have you begun or completed... | ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... | Who/what are your favorite media sources that ... |
1 rows × 296 columns
pandas| Q3 | Man | Nonbinary | Prefer not to say | Prefer to self-describe | Woman |
|---|---|---|---|---|---|
| Q2 | |||||
| 18-21 | 3310 | 13 | 69 | 7 | 1160 |
| 22-24 | 3168 | 15 | 50 | 6 | 1044 |
| 25-29 | 3425 | 14 | 56 | 6 | 971 |
| 30-34 | 2248 | 12 | 43 | 6 | 663 |
| 35-39 | 1791 | 6 | 36 | 1 | 519 |
| 40-44 | 1480 | 6 | 29 | 2 | 410 |
| 45-49 | 997 | 6 | 10 | 1 | 239 |
| 50-54 | 759 | 0 | 14 | 1 | 140 |
| 55-59 | 506 | 3 | 13 | 0 | 89 |
| 60-69 | 470 | 3 | 10 | 1 | 42 |
| 70+ | 112 | 0 | 4 | 2 | 9 |
| Q3 | Man | Nonbinary | Prefer not to say | Prefer to self-describe | Woman |
|---|---|---|---|---|---|
| Q2 | |||||
| 18-21 | 0.181211 | 0.166667 | 0.206587 | 0.212121 | 0.219448 |
| 22-24 | 0.173437 | 0.192308 | 0.149701 | 0.181818 | 0.197503 |
| 25-29 | 0.187507 | 0.179487 | 0.167665 | 0.181818 | 0.183693 |
| 30-34 | 0.123070 | 0.153846 | 0.128743 | 0.181818 | 0.125426 |
| 35-39 | 0.098051 | 0.076923 | 0.107784 | 0.030303 | 0.098184 |
| 40-44 | 0.081025 | 0.076923 | 0.086826 | 0.060606 | 0.077563 |
| 45-49 | 0.054582 | 0.076923 | 0.029940 | 0.030303 | 0.045214 |
| 50-54 | 0.041553 | 0.000000 | 0.041916 | 0.030303 | 0.026485 |
| 55-59 | 0.027702 | 0.038462 | 0.038922 | 0.000000 | 0.016837 |
| 60-69 | 0.025731 | 0.038462 | 0.029940 | 0.030303 | 0.007946 |
| 70+ | 0.006132 | 0.000000 | 0.011976 | 0.060606 | 0.001703 |
pivot_table| Q3 | Man | Nonbinary | Prefer not to say | Prefer to self-describe | Woman |
|---|---|---|---|---|---|
| Q2 | |||||
| 18-21 | 3310 | 13 | 69 | 7 | 1160 |
| 22-24 | 3168 | 15 | 50 | 6 | 1044 |
| 25-29 | 3425 | 14 | 56 | 6 | 971 |
| 30-34 | 2248 | 12 | 43 | 6 | 663 |
| 35-39 | 1791 | 6 | 36 | 1 | 519 |
| 40-44 | 1480 | 6 | 29 | 2 | 410 |
| 45-49 | 997 | 6 | 10 | 1 | 239 |
| 50-54 | 759 | 0 | 14 | 1 | 140 |
| 55-59 | 506 | 3 | 13 | 0 | 89 |
| 60-69 | 470 | 3 | 10 | 1 | 42 |
| 70+ | 112 | 0 | 4 | 2 | 9 |
duration_min.pandaspd.DataFrame.pivot())pd.DataFrame.melt()) pd.DataFrame.pivot()
pd.DataFrame.melt()
Source
| country | 1999 | 2000 | |
|---|---|---|---|
| 0 | Afghanistan | 745 | 37737 |
| 1 | Brazil | 2666 | 80488 |
| year | 1999 | 2000 |
|---|---|---|
| country | ||
| Afghanistan | 745 | 37737 |
| Brazil | 2666 | 80488 |
pandas.pd.DataFrame.isna() or pd.DataFrame.notna() for filtering.