Week 10 Tutorial: Data Wrangling in Python

POP77001 Computer Programming for Social Scientists

Loading the Dataset

Replace filepath with the location of the file on your computer

```
1 import pandas as pd
1 # This time let's skip the 2nd row, which contains questions
2 PATH = '../data/kaggle survey 2022 responses.csv'
  kaggle2022 = pd.read_csv(PATH, skiprows = [1])
 kaggle2022.head(n = 1)
                                Q4 Q5 Q6_1 Q6_2 Q6_3 Q6_4 Q6_5
  Duration
                 Q2
                        Q3
         (in
   seconds)
  121
               30-34
                     Man India No NaN
                                                   NaN
                                                            NaN
                                                                    NaN
                                                                            NaN
```

$1 \text{ rows} \times 296 \text{ columns}$

seconds)

```
# We will load the questions as a separate dataset
kaggle2022_qs = pd.read_csv(PATH, nrows = 1)
kaggle2022_qs

Duration Q2 Q3 Q4 Q5 Q6_1 Q6_2
(in
Q6_2
```

	Duration (in	Q2	Q3	Q4	Q5	Q6_1	Q6_2
	seconds)						
0	Duration (in seconds)	What is your age (# years)?	What is your gender? - Selected Choice	In which country do you currently reside?	Are you currently a student? (high school, uni	On which platforms have you begun or completed	On which platforms have you begun or completed

 $1 \text{ rows} \times 296 \text{ columns}$

Exercise: Categorical Variables

- Load the dataset (as local file)
- Consider country of residence reported by respondents (question Q4).
- Make sure you can select the column both using label and index.
- Calculate the percentages of top 3 countries of residence in the sample.

Crosstabulation in pandas

- 1 # Calculate crosstabulation between 'Age group' (Q2) and 'Gender' (Q3)
- 2 pd.crosstab(kaggle2022['Q2'], kaggle2022['Q3'])

Q 3	Man	Nonbinary	Prefer not to say	Prefer to self-describe	Woman
Q2					
18-21	3310	13	69	7	1160
22-24	3168	15	50	6	1044
25-29	3425	14	56	6	971
30-34	2248	12	43	6	663
35-39	1791	6	36	1	519
40-44	1480	6	29	2	410
45-49	997	6	10	1	239
50-54	759	0	14	1	140
55-59	506	3	13	0	89
60-69	470	3	10	1	42

Q3	Man	Nonbinary	Prefer not to say	Prefer to self-describe	Woman
Q2					
70+	112	0	4	2	9

Margins in Crosstab

- 1 # It is often useful to see the proportions/percentages rather than raw counts
- 2 pd.crosstab(kaggle2022['Q2'], kaggle2022['Q3'], normalize = 'columns')

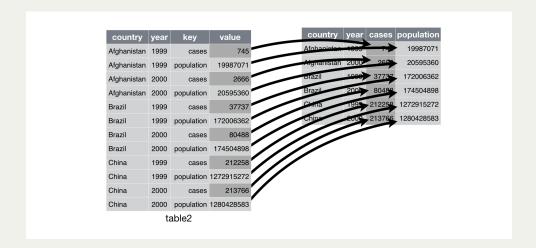
Q3	Man	Nonbinary	Prefer not to	Prefer to self-	Woman
			say	describe	
Q2					
18-21	0.181211	0.166667	0.206587	0.212121	0.219448
22-24	0.173437	0.192308	0.149701	0.181818	0.197503
25-29	0.187507	0.179487	0.167665	0.181818	0.183693
30-34	0.123070	0.153846	0.128743	0.181818	0.125426
35-39	0.098051	0.076923	0.107784	0.030303	0.098184
40-44	0.081025	0.076923	0.086826	0.060606	0.077563
45-49	0.054582	0.076923	0.029940	0.030303	0.045214
50-54	0.041553	0.000000	0.041916	0.030303	0.026485
55-59	0.027702	0.038462	0.038922	0.000000	0.016837

Q3	Man	Nonbinary	Prefer not to	Prefer to self-	Woman
			say	describe	
Q2					
60-69	0.025731	0.038462	0.029940	0.030303	0.007946
70+	0.006132	0.000000	0.011976	0.060606	0.001703

Crosstab with pivot_table

```
1 # For `values` variable we use `Q4`, but any other would work equally well
2 pd.pivot_table(
3   kaggle2022,
4   index = 'Q2',
5   columns = 'Q3',
6   values = 'Q4',
7   aggfunc = 'count',
8   fill_value = 0
9 )
```

Q3	Man	Nonbinary	Prefer not to say	Prefer to self-describe	Woman
Q2					
18-21	3310	13	69	7	1160
22-24	3168	15	50	6	1044
25-29	3425	14	56	6	971
30-34	2248	12	43	6	663
35-39	1791	6	36	1	519
40-44	1480	6	29	2	410
45-49	997	6	10	1	239


Q3	Man	Nonbinary	Prefer not to say	Prefer to self-describe	Woman
Q2					
50-54	759	0	14	1	140
55-59	506	3	13	0	89
60-69	470	3	10	1	42
70+	112	0	4	2	9

Exercise: Manipulating Columns

- Let's take a look at the first column of the dataset.
- It lists the time it took respondents to complete the survey (in seconds).
- First, change column's long name to duration_min.
- Now modify the column such that it shows time in minutes.
- Filter dataset leaving only respondents who took more than 3 mins to respond.
- How many are dropped?

Pivoting Data in pandas

- Recall pivoting from R.
- The two main operations are:
 - Spreading some variable across columns (pd.DataFrame.pivot())
 - Gathering some columns in a variable pair (pd.DataFrame.melt())

pd.DataFrame.pivot()

pd.DataFrame.melt()

Pivoting Data to Long

```
1 df_wide = pd.DataFrame({
2    'country': ['Afghanistan', 'Brazil'],
3    '1999': [745, 2666],
4    '2000': [37737, 80488]
5  })
6 df_wide
```

	country	1999	2000
0	Afghanistan	745	37737
1	Brazil	2666	80488

```
1 # Pivoting longer
2 df_long = df_wide.melt(
3    id_vars = 'country',
4    var_name = 'year',
5    value_name = 'cases'
6 )
7 df_long
```

	country	year	cases
0	Afghanistan	1999	745
1	Brazil	1999	2666
2	Afghanistan	2000	37737
2	D#07:1	2000	90199

Pivoting Data to Wide

```
1 # Pivoting wider
2 df_wide = df_long.pivot(
3    index = 'country',
4    columns = 'year',
5    values = 'cases'
6 )
7 df_wide
```

```
      year
      1999
      2000

      country
      Afghanistan
      745
      37737

      Brazil
      2666
      80488
```

```
# As using pivot creates an index from
the the column used as the row labels, we
# may want to use reset_index to move
# the data back into a column
# df_wide.reset_index()
```

year	country	1999	2000
0	Afghanistan	745	37737
1	Brazil	2666	80488

Week 10 Exercise (unassessed)

- Try replicating Exercise 5 from Assignment 2 using pandas.
- You can use pd.DataFrame.isna() or pd.DataFrame.notna() for filtering.