
Week 2:
Words & Tokens

POP77032 Quantitative Text Analysis for Social Scientists

Tom Paskhalis

1

Overview
Character Encoding

Words

Tokens

Regular Expressions

2

Character Encoding

3

Foundations of Computer Memory
Bits:

The smallest unit of digital data.

Can be either 0 or 1.

n bits can represent different values.2𝑛

E.g. 2 bits can represent 4 values: 00, 01, 10, 11.

Bytes:

8 bits = 1 byte

Thus, 1 byte can represent 256 values: .[00000000, 00000001, . . . , 11111111]
 than are kilobyte (KB), megabyte (MB), gigabyte (GB), etc.Metric aggregations

4

https://en.wikipedia.org/wiki/Byte#Multiple-byte_units

Character Encoding
Character - “the smallest component of written language that has semantic value”
().https://unicode.org/glossary/#character

E.g. “h”, “ε”, “4”, “&”, “!”, “€”, “🤖”.

Character set - a collection of characters.

E.g. Latin alphabet, Greek alphabet, Arabic numerals, punctuation marks, etc.

Code point - the unique value assigned to each character in a set.

Depends on what is a considered a valid value: binary - 101101, decimal - 45,
hexadecimal - 2D, etc.

A mapping between code points and characters is called an encoding.

5

https://unicode.org/glossary/#character

ASCII
ASCII (American Standard Code for Information Interchange) - one of the earlier wide-
spread character encodings.

Only encodes characters (of which 95 are printable, others for teletype).

Essentially, English alphabet, Arabic numerals, and some punctuation marks.

Later extended to characters
(aka ISO-8859-1, Latin-1, closely related to Windows-1252).

Added support for most Western European languages.

A lot more needed to support all the world’s languages…

= 12827

= 25628

6

ASCII: Code Points

(&)Wikipedia US DoD

E.g., decimal code point for “A” is 65, comprised of these bits:

1000001 (original ASCII)

01000001 (ISO-8859-1)

7

https://commons.wikimedia.org/wiki/File:USASCII_code_chart.svg
https://www.google.de/books/edition/Military_Standard/um2cRERx4S4C?gbpv=1&pg=RA3-PA2

Unicode
Designed to support all the world’s writing systems that can be digitized.

Variable-length, between 1 and 4 bytes (8 and 32 bits).

First 128 code points are the same as in ASCII (backward compatibility).

UTF-8 - most common Unicode encoding (also UTF-16, but more rare):

1 byte for ASCII characters.

2 bytes for most Latin, Greek, Cyrillic, CJK, etc.

3 bytes for the rest of the BMP.

4 bytes for the rest of Unicode.

Supports over 1.1M code points (as of Unicode 17.0 ~160K assigned).

8

UTF-8: Code Points
Decimal Binary Hexadecimal UTF-8 Character Description

65 01000001 0x41 U+0041 A Latin Capital Letter A

66 01000010 0x42 U+0042 B Latin Capital Letter B

67 01000011 0x43 U+0043 C Latin Capital Letter C

68 01000100 0x44 U+0044 D Latin Capital Letter D

69 01000101 0x45 U+0045 E Latin Capital Letter E

70 01000110 0x46 U+0046 F Latin Capital Letter F

E.g. code point for “A”

65 in decimal numeral system

1000001 in binary (original ASCII)

41 in hexadecimal, represented as U+0041 in UTF

9

Text Encoding: Remarks
Text encoding provides an abstract representation of characters as code points.

I.e. representing characters as code points is different from their visual rendering.

The same character (e.g. “A”) can have infinitely many visual representations (fonts, sizes,
colors, etc.).

And some characters (e.g. extinct languages) can have no available glyphs (fonts) to render
them.

Inside an actual file we have code points encoded using a specific encoding (e.g. UTF-8).

10

UTF-8 and Python
Starting from Python 3 all strings are using Unicode by default.

I.e. each string is a sequence of Unicode-encoded code points.

s = "Hello, 世界!"1
len(s)2

10

for char in s:1
 print(f"Character: {char}, Code point: {ord(char)}")2

Character: H, Code point: 72
Character: e, Code point: 101
Character: l, Code point: 108
Character: l, Code point: 108
Character: o, Code point: 111
Character: ,, Code point: 44
Character: , Code point: 32
Character: 世, Code point: 19990
Character: 界, Code point: 30028
Character: !, Code point: 33

11

http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf

UTF-8 and R
In R strings are also using UTF-8 by default (including Windows from R 4.2.0).

s <- "Hello, 世界!"1
nchar(s)2

[1] 10

for (char in strsplit(s, "")[[1]]) {1
 cat(sprintf("Character: %s, Code point: %d\n", char, utf8ToInt(char)))2
}3

Character: H, Code point: 72
Character: e, Code point: 101
Character: l, Code point: 108
Character: l, Code point: 108
Character: o, Code point: 111
Character: ,, Code point: 44
Character: , Code point: 32
Character: 世, Code point: 19990
Character: 界, Code point: 30028
Character: !, Code point: 33

12

http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf

Text Encoding: Things to Try
Pick a movie you like.

Go to .

Find subtitles for that movie in a language that uses a different script.

Download the subtitles and try to open them in a text editor.

Check the ‘guessed’ encoding of the file.

Are all characters displayed correctly?

Try to open the file programmatically in R or Python.

OpenSubtitles

13

https://www.opensubtitles.org/

Words and Tokens

14

How many words in a sentence?
Hohohoho, Mister Finn, you’re going to be Mister Finnagain!

It depends!

9 words if we exclude punctuation and treat ‘you’re’ as a single word.

10 words if we exclude punctuation and split ‘you’re’ into ‘you’ and ‘re’.

12 words if we include punctuation and treat ‘you’re’ as a single word.

13 words if we include punctuation and split ‘you’re’ into ‘you’ and ‘re’.

15

How many words in a sentence?
Hello, world!

And in:

Hello, 世界!

Not every written language uses spaces to separate words!

E.g. Chinese, Japanese, Thai do not.

16

Vocabulary
It is important to distinguish:

Word types - number of unique words in a text (vocabulary size).

Word instances - total number of words in a text (text length).

But the number of all word forms can be very large!

Which means that any model is likely to encounter words that it has not seen during training.

Thus, instead of actual words, we would use something more flexible, aka tokens.

17

Tokens
Token - an instance of a sequence of characters that are grouped together as a useful
semantic unit for processing.

Some options:

Word tokens - sequences of characters separated by spaces/punctuation.

Subword tokens - smaller units than words (e.g. syllables, morphemes).

Character tokens - individual characters.

Different tasks would require different tokenization strategies.

In social science applications word-derived tokens are most common.

In NLP applications subword tokens are often used (e.g. Byte Pair Encoding).

18

Regular Expressions

19

Find and Replace
Basic find and replace operations are the most widely available
text manipulation tools.

They are available in text editors, word processors, IDEs, etc.

Oftentimes they are used to identify exact matches.

But what if we want to find words that aren’t exactly the same?

20

How to find a word?
Imagine that you want to identify all instances of the word ‘times’ in the following text:

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age
of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season
of Light, it was the season of Darkness, it was the spring of hope, it was the winter of
despair…

This is straightforward:

import re1

tale = """It was the best of times, it was the worst of times,1
it was the age of wisdom, it was the age of foolishness,2
it was the epoch of belief, it was the epoch of incredulity,3
it was the season of Light, it was the season of Darkness,4
it was the spring of hope, it was the winter of despair..."""5

r before quotation mark denotes a raw string1
re.findall(r"times", tale)2

['times', 'times']

21

http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf

How to find a word?
Now, say, you want to find all instances of ‘it’.

This is a bit trickier since ‘it’ can be both capitalised and lowercase.

To match both I and i we can use a character set: [Ii]

This will match either ‘I’ or ‘i’.

Also knows as character disjunction

its = re.findall(r"[Ii]t", tale)1

len(its)1

11

its1

['It', 'it', 'it', 'it', 'it', 'it', 'it', 'it', 'it', 'it', 'it']

22

http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf

Regular Expressions
What we have seen above is an example of a regular
expression,

A sequence of characters that define a search pattern.

Also knows as regex or regexp.

This is, probably, the single most widely used tool for text
processing.

It is supported in most programming languages and text editors.

23

Regular Expressions: Main Patterns
Regex Name Description Example Matches

. Wildcard Matches any single character (except newline, usually) c.t cat | cut

* Zero or more Matches 0 or more of the preceding token lo*l ll | lol | looool

+ One or more Matches 1 or more of the preceding token lo+l lol | looool

? Optional Matches 0 or 1 of the preceding token colou?r color | colour

{n} Exact count Matches exactly n occurrences a{3} aaa

{n,} At least n Matches n or more occurrences a{2,} aa | aaa

{n,m} Range Matches between n and m occurrences a{2,4} aa | aaa | aaaa

^ Start anchor Matches start of string ^Hello Hello world

$ End anchor Matches end of string world$ Hello world

[] Character class Matches any one character inside brackets [aeiou] a | e | i

[^] Negated class Matches any character not in brackets [^0-9] a | #

| Alternation Logical OR cat|dog cat | dog

() Grouping Groups tokens and captures matches (ab)+ ab | abab

24

Regular Expressions: Example
Going back to the original quote, let’s find all the attributes of the period that Charles Dickens
describes:

tale1

'It was the best of times, it was the worst of times,\nit was the age of wisdom, it was the age of
foolishness,\nit was the epoch of belief, it was the epoch of incredulity,\nit was the season of Light, it was
the season of Darkness,\nit was the spring of hope, it was the winter of despair...'

We could start by constructing a regex part that captures age, epoch and season.

period = r"(age|epoch|season)"1

Since we don’t want to extract (capture) these words as such, we will re-write it as a non-
capturing group:

Note the ?: prefix1
period = r"(?:age|epoch|season)"2

Now we will add the following of to the regex with \s+ matching one or more spaces:

periodof = rf"{period}\s+of\s+"1
periodof2

'(?:age|epoch|season)\\s+of\\s+'

25

http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf

Regular Expressions: Example
Continued
Finally, we can add the search pattern for the actual word with the attribute of the period:

(\w+) matches a sequence of word characters (letters, digits, or underscores)1
attributes = rf"{periodof}(\w+)"2
attributes3

'(?:age|epoch|season)\\s+of\\s+(\\w+)'

Now it’s time to apply it:

re.findall(attributes, tale)1

['wisdom', 'foolishness', 'belief', 'incredulity', 'Light', 'Darkness']

26

http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf
http://127.0.0.1:4166/02_lect_words.html?print-pdf

Regular Expressions: Remarks
The construction of regular expressions used to be a very laborious process.

The advancement of gen AI vastly simplified it.

However, you do still need to understand the basic building blocks and syntax.

Guiding the model with clear instructions and examples is crucial.

Extra

Python documentation on regular expressions

Extra

R documentation on regular expressions

27

https://docs.python.org/3/howto/regex.html
https://search.r-project.org/R/refmans/base/html/regex.html

Next
Tutorial: Regular expressions and string distances

Next week: Quantifying Texts

Assignment 1: Due 15:59 on Wednesday, 11th February
(submission on Blackboard)

28

