
Week 3:
Quantifying Texts

POP77032 Quantitative Text Analysis for Social Scientists

Tom Paskhalis

1

Overview
Motivation

Digital Text Storage

Text Preprocessing

APIs

JSON

2

Motivation

3

Parliamentary Power in 17th c. England

(Rodon & Paskhalis, 2024)

4

https://doi.org/10.31219/osf.io/qgu9c

Ideological Positions in Germany

(Slapin & Proksch, 2008)

5

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1540-5907.2008.00338.x

Complexity of US State of the Union Addresses

(Benoit, Munger & Spirling, 2019)

6

https://onlinelibrary.wiley.com/doi/full/10.1111/ajps.12423

Digital Storage of Text

7

Plain Text & Binary Files
Plain text files contain only human-readable characters.

“Simple” text, e.g. .txt

Markup languages, e.g. .md, .Rmd, qmd, .html

Data storage, e.g. .csv, .tsv, .tab, .json, .xml

Images, e.g. .svg, .eps

Computer code, e.g. .py, .R, .tex, .sh

Some other: .ipynb (effectively, .json), .docx (effectively, zipped .xml)

Binary files contain computer-readable data (parts can be human-readable).

Text, e.g. .doc, .rtf, .pdf

Data storage, e.g. .pickle, .rds, .feather

Images, e.g. .png, .jpg, .gif

Not always dichotomous (e.g. .docx, .pdf, .svg).

8

Text Encoding Recap
All text files stored in digital form are represented as numbers.

These numbers correspond to certain code points,

Which are values assigned to characters from some set.

Encoding is then the mapping between characters and code points.

Unicode (particularly, UTF-8) is the most widely used encoding.

It provides representations for the vast majority of writing systems.

9

Text Encoding Caveats
Plain text files don’t contain information about encoding.

Instead, each software “guesses” (often, assumes the default).

If the guess is wrong, text can be displayed incorrectly ().

UTF-8 is the most common encoding (the one you should use).

However, many texts still use other encodings.

Windows is often a problem (can use Windows-1252 or UTF-16).

In general, no easy way to know the encoding of a text file.

mojibake

10

https://en.wikipedia.org/wiki/Mojibake

Text Encoding: Example
Write out text using Python in ISO-8859-1 encoding.

tain_bo_cualinge = "Fecht n-óen do Ailill & do Meidb íar ndérgud a rígleptha dóib i Crúachanráith Chonnacht, 1
2

with open("../temp/latin1.txt", "w", encoding = "ISO-8859-1") as f:3
 f.write(tain_bo_cualinge)4

130

Read in text in R using the default (UTF-8) encoding.

tain_bo_cualinge <- readLines("../temp/latin1.txt")1
tain_bo_cualinge2

[1] "Fecht n-\xf3en do Ailill & do Meidb \xedar nd\xe9rgud a r\xedgleptha d\xf3ib i Cr\xfaachanr\xe1ith
Chonnacht, arrecaim comr\xe1d chind cherchailli eturru."

Using ISO-8859-1 (note the difference in the encoding name).

tain_bo_cualinge <- readLines("../temp/latin1.txt", encoding = "latin1")1
tain_bo_cualinge2

[1] "Fecht n-óen do Ailill & do Meidb íar ndérgud a rígleptha dóib i Crúachanráith Chonnacht, arrecaim comrád
chind cherchailli eturru."

11

http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf

Designing a Text
Analysis Study

12

Workflow in Text Analysis

(Grimmer & Stewart, 2013)

13

https://doi.org/10.1093/pan/mps028

Sample vs Population
Basic Idea: Observed text is a stochastic realization.

Systematic features shape most of observed verbal content.

Non-systematic, random features also shape verbal content.

14

Implications of a Stochastic View
Observed text is not the only text that could have been generated.

Research (system) design would depend on the question and quantity of interest.

Very different if you are trying to monitor something like hate speech, where what you
actually say matters, not the value of your “expected statement”.

Means that having “all the text” is still not a “population”.

15

Sampling Strategies
Be clear what is you sample and your population.

May not be feasible to perform any sampling.

Different types of sampling vary from random to purposive:

Random sampling (e.g. politician’s speeches)

Non-random sampling (e.g. messages containing hate speech on a social media platform)

Key is to make sure that what is being analyzed is a valid representation of the phenomenon
as a whole - a question of research design.

16

Text Preprocessing

17

Quantifying Texts

18

Some QTA Terminology
Corpus - a collection of texts for analysis.

E.g. SOTU addresses, Hansard debates, party manifestos, etc.

Document - a single text in the corpus.

E.g. a single SOTU address, one speech, a specific party manifesto, etc.

Token - a single unit of text.

E.g. typically a word, but can include punctuation, numbers, hashtags, etc.

Type - a unique token.

E.g. articles like “the” and “a” appearing throughout the corpus.

Tokenization - the process of breaking a text into tokens.

19

Some Linguistic Terminology
Tokens constitute the basic unit of analysis (particularly in NLP applications).

But how tokens are constructed can vary.

It might be useful to consider different tokens as the same.

E.g. “runs”, “running”, “ran” are all forms of the same word.

Stemming - mechanically removing affixes (usually, suffixes) from tokens.

E.g. “running” -> “run”, “runs” -> “run”.

Lemmatization - reducing tokens to their base (root) or dictionary form.

E.g. “ran” -> “run”, “runner” -> “run”.

While lemmatization is more accurate, it also requires more built-in knowledge about a
language.

20

Tokenization: R Example
library("quanteda")1

text <- "Hohohoho, Mister Finn, you're going to be Mister Finnagain!"1

tokens <- quanteda::tokens(text)1
tokens2

Tokens consisting of 1 document.
text1 :
 [1] "Hohohoho" "," "Mister" "Finn" "," "you're"
 [7] "going" "to" "be" "Mister" "Finnagain" "!"

quanteda::ntoken(tokens)1

text1
 12

quanteda::ntype(tokens)1

text1
 10

tokens <- quanteda::tokens_tolower(tokens)1
quanteda::ntoken(tokens)2

text1
 12

quanteda::ntype(tokens)1

text1
 10

tokens_stemmed <- quanteda::tokens_wordstem(tokens, language = "english")1
tokens_stemmed2

http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf

Tokens consisting of 1 document.
text1 :
 [1] "hohohoho" "," "mister" "finn" "," "you'r"
 [7] "go" "to" "be" "mister" "finnagain" "!"

21

Tokenization: Python Example
import transformers1

text = "Hohohoho, Mister Finn, you're going to be Mister Finnagain!"1

basic_tokenizer = transformers.BasicTokenizer()1
basic_tokens = basic_tokenizer.tokenize(text)2
basic_tokens3

['hohohoho', ',', 'mister', 'finn', ',', 'you', "'", 're', 'going', 'to', 'be', 'mister', 'finnagain', '!']

gpt2_tokenizer = transformers.GPT2Tokenizer.from_pretrained("gpt2")1
gpt2_tokens = gpt2_tokenizer.tokenize(text)2
gpt2_tokens3

['H', 'oh', 'oh', 'oho', ',', 'ĠMister', 'ĠFinn', ',', 'Ġyou', "'re", 'Ġgoing', 'Ġto', 'Ġbe', 'ĠMister',
'ĠFinn', 'again', '!']

len(basic_tokens)1

14

len(gpt2_tokens)1

17

len(set(basic_tokens))1

12

len(set(gpt2_tokens))1

13

22

http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf

Stopwords
Not all words can be assumed to be equally informative.

E.g. “the”, “a”, “and”, etc. are common in most texts.

Stopwords are words that are removed from the text before analysis.

library("stopwords")1

stopwords::stopwords(language = "en")1

 [1] "i" "me" "my" "myself" "we"
 [6] "our" "ours" "ourselves" "you" "your"
 [11] "yours" "yourself" "yourselves" "he" "him"
 [16] "his" "himself" "she" "her" "hers"
 [21] "herself" "it" "its" "itself" "they"
 [26] "them" "their" "theirs" "themselves" "what"
 [31] "which" "who" "whom" "this" "that"
 [36] "these" "those" "am" "is" "are"
 [41] "was" "were" "be" "been" "being"
 [46] "have" "has" "had" "having" "do"
 [51] "does" "did" "doing" "would" "should"
 [56] "could" "ought" "i'm" "you're" "he's"
 [61] "she's" "it's" "we're" "they're" "i've"
 [66] "you've" "we've" "they've" "i'd" "you'd"
 [71] "he'd" "she'd" "we'd" "they'd" "i'll"
 [76] "you'll" "he'll" "she'll" "we'll" "they'll"
 [81] "isn't" "aren't" "wasn't" "weren't" "hasn't"
 [86] "haven't" "hadn't" "doesn't" "don't" "didn't"
 [91] "won't" "wouldn't" "shan't" "shouldn't" "can't"
 [96] "cannot" "couldn't" "mustn't" "let's" "that's"
[101] " h ' " " h t' " "h ' " "th ' " " h ' "

23

http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf

API

24

APIs
API - Application Programming Interface.

Programmatic way to interact with a software application/service.

Widely used in computing (even on a single machine).

Here, focus on web APIs, that provide interface to web services.

A set of structured HTTP/S requests returns some responses.

E.g. in XML or JSON format.

25

APIs vs Web Scraping
Advantages:

Cleaner data collection: no malformed HTML, consistency, fewer legal issues, etc.

Standardised data access processes.

Scalability.

Potentially, pre-existing robust packages for handling common tasks.

Disadvantages:

Limited availability.

Dependency on API providers.

Access limits

Rate limits.

Price

26

Principles of APIs

Internet

request

response

Application API
Web

server Database

27

Working with Web APIs
Types of APIs:

RESTful APIs - queries for static information at a given moment,

Streaming APIs - tracking real-time changes (e.g. posts, economic indicators, etc.)

API documentation varies by provider.

But usually is rather technical in nature (written for developers).

Some key terms:

Endpoint - URL (web location) that receives requests and sends responses.

Parameters - custom information that can be passed to the API.

Response - the data returned by the API.

28

Authentication
Many APIs require a key or tokens.

Most APIs are rate-limited

E.g. restrictions by user/key/IP address/time period.

Make sure that you understand the terms of service/use.

Even providers of public free APIs can impose some restrictions.

29

Example: Guardian API
library("httr")1

It is a good idea to not hard-code the API key in the script1
and, instead, load it dynamically from a file2
api_key <- readLines("../temp/guardian_api_key.txt")3

Endpoint1
base_url <- "https://content.guardianapis.com/search"2

Parameters1
params <- list(2
 "api-key" = api_key,3
 "q" = "ireland",4
 "page-size" = 15
)6

Make the request and receive the response1
response <- httr::GET(url = base_url, query = params)2

Check the status of the response (200 means successful)1
Status codes 4xx are client errors; 5xx are server errors2
response$status_code3

[1] 200

response1

Response [https://content.guardianapis.com/search?api-key=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX&q=ireland&page-
size=1]
 Date: 2026-02-05 10:55
 Status: 200
 Content-Type: application/json
 Size: 627 B

30

http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf

JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format

It is commonly used in web APIs (as well as elsewhere, e.g. Jupyter Notebooks).

At its core, JSON objects are key-value pairs (often deeply nested).

Keys have to be strings with double quotes.

Values can be one of the following types:

String (e.g., “example”)

Number (e.g., 42, 3.141)

Array (e.g., [“a”, “b”, “c”])

Boolean (e.g., true, false)

null

Extra

JSON Syntax

31

https://www.w3schools.com/js/js_json_syntax.asp

JSON: Example
library("jsonlite")1

json <- httr::content(response, as = "text", encoding = "UTF-8")1

json |>1
 jsonlite::prettify()2

{
 "response": {
 "status": "ok",
 "userTier": "developer",
 "total": 115673,
 "startIndex": 1,
 "pageSize": 1,
 "currentPage": 1,
 "pages": 115673,
 "orderBy": "relevance",
 "results": [
 {
 "id": "travel/2026/jan/05/i-ran-1400-miles-around-ireland",
 "type": "article",
 "sectionId": "travel",
 "sectionName": "Travel",
 "webPublicationDate": "2026-01-05T07:00:29Z",
 "webTitle": "I ran 1,400 miles around Ireland",
 "webUrl": "https://www.theguardian.com/travel/2026/jan/05/i-ran-1400-miles-around-ireland",
 "apiUrl": "https://content.guardianapis.com/travel/2026/jan/05/i-ran-1400-miles-around-ireland",
 "isHosted": false,
 "pillarId": "pillar/lifestyle",
 "pillarName": "Lifestyle"
 }
]
 }
}

32

http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf

JSON Representation
As JSON is just a text format, its representation in code will vary by language.

E.g. in R JSON -> list, in Python -> dictionary

json_parsed <- jsonlite::fromJSON(json)1

str(json_parsed)1

List of 1
 $ response:List of 9
 ..$ status : chr "ok"
 ..$ userTier : chr "developer"
 ..$ total : int 115673
 ..$ startIndex : int 1
 ..$ pageSize : int 1
 ..$ currentPage: int 1
 ..$ pages : int 115673
 ..$ orderBy : chr "relevance"
 ..$ results :'data.frame': 1 obs. of 11 variables:
 $ id : chr "travel/2026/jan/05/i-ran-1400-miles-around-ireland"
 $ type : chr "article"
 $ sectionId : chr "travel"
 $ sectionName : chr "Travel"
 $ webPublicationDate: chr "2026-01-05T07:00:29Z"
 $ webTitle : chr "I ran 1,400 miles around Ireland"
 $ webUrl : chr "https://www.theguardian.com/travel/2026/jan/05/i-ran-1400-miles-around-
ireland"
 $ apiUrl : chr "https://content.guardianapis.com/travel/2026/jan/05/i-ran-1400-miles-around-
i l d"

33

http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf

JSON Representation
dim(json_parsed$response$results)1

[1] 1 11

head(json_parsed$response$results)1

 id type sectionId
1 travel/2026/jan/05/i-ran-1400-miles-around-ireland article travel
 sectionName webPublicationDate webTitle
1 Travel 2026-01-05T07:00:29Z I ran 1,400 miles around Ireland
 webUrl
1 https://www.theguardian.com/travel/2026/jan/05/i-ran-1400-miles-around-ireland
 apiUrl
1 https://content.guardianapis.com/travel/2026/jan/05/i-ran-1400-miles-around-ireland
 isHosted pillarId pillarName
1 FALSE pillar/lifestyle Lifestyle

34

http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf
http://127.0.0.1:6476/03_lect_quant_text.html?print-pdf

Next
Tutorial: Text Preprocessing and APIs

Next week: Dictionaries

Assignment 1: Due 15:59 on Wednesday, 11th February
(submission on Blackboard)

35

