Week 4: Dictionaries

POP77032 Quantitative Text Analysis for Social Scientists

Tom Paskhalis

Overview

e Bag-of-words
e Document-Term Matrix
e Dictionaries

e Text classification

Bag-of-words

Quantifying Texts

When I presented the words
supplementary budget to dogg6 cenny_f magg because hag 1nt2 geg somg through nexz wherg man; 1riig
Egii 5Zu:2uigsgoiir;i; ! tOS_cowen_f% 9 4 8 5 5 5 14 13 4 9 8
way through this period tl4_ocaolain_sf 3 3 3 4 7 3 7 2 3 5 6
Y 9 P t01_lenihan_ff 12 1 5 4 2 11 9 16 14 6 9
of severe economic tll_gormley_green 0 0 0 3.0 2 0 3 1 1 2
distress. Today, I can t04_morgan_sf 11 g8 7 15 8 19 6 5 3 6 6
report that t1l2_ryan_green 2 2 3 7 0 3 0 1 6 0 0
notwithstanding the t10_quinn_lab 1 4 4 2 8 4 1 0 1 2 0
difficulties of the past t07_odonnell_fg 5 4 2 1 5 0 1 1 0 3 0
eight months, we are now t09_higgins_1lab 2 2 5 4 0 1 0 0 2 0 0
on the road to economic t03_burton_lab 4 8§ 12 10 5 5 4 5 8 15 8
recovery. t13_cuffe_green 1 2 0 0 11 0 16 3 0 3 1
t08_gilmore_lab 4 8 7 4 3 6 4 5 1 2 11
t02_bruton_fg 1 10 6 4 4 3 0 6 16 5 3

In this next phase of the

Government’s plan we must
stabilise the deficit in
a fair way, safeguard
those worst hit by the
recession, and stimulate
crucial sectors of our
economy to sustain and
create jobs. The worst is
over.

This Government has the Scahng documents

moral authority and the
well-grounded optimism
rather than the cynicism
of the Opposition. It has
the imagination to create
the new jobs in energy,
agriculture, transport
and construction that
this green budget will

P R B - LI LI

Descriptive statistics
on words

Classifying documents

Extraction of topics

Vocabulary analysis

Sentiment analysis

Tokenisation

« Say, we fokenised a single text:

text <- "The quick brown fox jumps over the lazy dog."
tokens <- quanteda::tokens(text)
tokens

Tokens consisting of 1 document.
textl :

[1] "The" "quick" "brown" "fox"

"jumpS" lloverll Ilthell ll'l-azyll lldogll
[10] n . n

« But what if we have multiple texts?

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

Document-Term Matrix (DTM)

Imagine in addition to the text above, we have another one:

text2 <- "The quick brown fox jumps over the lazy cat."

If we were to create a document-term matrix (DTM), it would look like this:

Document brown cat dog fox jumps lazy over quick the

1 1 0 1 1 1 1 1 1 2

2 1 1 0 1 1 1 1 1 2

Where each row corresponds to a document and each column to a token.

In math terms, a matrix W of N documents (rows) and J terms (columns),

= where each W;; shows the number of times the jth term appears in the ith document.

= also referred to as the term frequency of term j in document .

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

DTM

In real life the documents are unlikely to have as much overlap.

A more realistic example of 2 texts would be something like this:

speechl <- "I thank the Deputy."
speech2 <- "Deputy, please resume your seat."

If we we were to create a document-term matrix, it would look like this:

Document deputy i please resume seat thank the your

1 1 1 0 0 0 1 1 0

2 1 0 1 1 1 0 0 1

This is quite a few zeros!

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

Sparse Matrix

o In practice, DTMs are often stored as sparse matrices.

« Such matrix only stores non-zero values and their positions.

library("Matrix")
sm <- Matrix::sparseMatrix(
i=oc(1, 1, 1, 1, 2, 2, 2, 2, 2),
j =c(1, 2, 6, 7, 1, 3, 4, 5, 8),
x=c¢(1, 1, 1, 1, 1, 1, 1, 1, 1),
dims = c(2, 8),
dimnames = list(
c("Doc1", "Doc2"),
c("deputy", "i", "please", "resume", "seat", "thank", "the", "your"))

)

sm

2 x 8 sparse Matrix of class "dgCMatrix"

deputy i please resume seat thank the your
Docl 11 : : : 1 1
Doc2 1. 1 1 1 . . 1

« Of course, we will not be creating these matrices manually.

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

DTM in R

« In R we can use the quanteda package to create DTMs.
library("quanteda")
« We start by tokenising our small corpus:

speeches <- c(speechl, speech2)
speeches_toks <- quanteda::tokens(tolower(speeches), remove_punct = TRUE)
speeches_toks

Tokens consisting of 2 documents.

textl :

[1] llill Ilthankll Ilthell lldeputyll

text2 :

[1] "deputy" "please" "resume" "your" "seat"

o Then we create a DTM (or, as it is called here, a document-feature matrix (DFM)):

speeches_dfm <- quanteda::dfm(speeches_toks)
speeches_dfm

Document-feature matrix of: 2 documents, 8 features (43.75% sparse) and O docvars.

features
docs i1 thank the deputy please resume your seat
textl 1 1 1 1 0 0 0 0

text2 0 0] (0] 1 1 1 1 1

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

DTM in Python

 In Python we can use the ML library sklearn to work with DTMs.

import sklearn

speeches = ["I thank the Deputy.", "Deputy, please resume your seat."]
vectorizer = sklearn.feature_extraction.text.CountVectorizer(token_pattern = r"\b\w+\b")

dtm = vectorizer.fit_transform(speeches)
dtm

<Compressed Sparse Row sparse matrix of dtype 'int64'
with 9 stored elements and shape (2, 8)>

e To see the tokenised features:

vectorizer.get_feature_names_out()
array(['deputy', 'i', 'please', 'resume', 'seat',K 'thank', 'the', 'your'],
dtype=object)
« To see the DTM as an array:

dtm. toarray()

array([[ll 1/ 0/ 0I 0I 1/ 1/ 0]’
[1, 6, 1, 1, 1, 0, 0, 1]])

4

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

Bag of Words

e This representation of text is also known as bag-of-words.
e The key aspects of this approach are:

= Single words are considered as relevant features of each
document.

= Documents are quantified by counting occurrences of words.
= Word order 1s 1gnored.

» Grammar and syntax are discarded.

11

Why Bag of Words?

e Simple.

o Efficient.

e Works well in many cases.

e Can be extended (co-occurrences aka “n-grams”)

e Has been extensively used and validated in social sciences.

e Of course, there are cases when word order matters (e.g. text
reuse).

12

Trimming DTMs

As we have seen, by default, most DTMs tend to be very sparse.

This can be a problem as this results in computational inefliciencies.

It might also be the case that not tokens are equally informative.

= Temoving punctuation
= removing stopwords

= creating equivalence classes through stemming/lemmatisation

A more structured way would be to trim by frequency

Some examples of trimming features that we have already encountered:

13

o o
Trimming by Frequency
« Document frequency of term j counts how many documents contain the feature j:
N
DF; =) 1(W;; > 0)
i=1
« Total term frequency of term j counts how many times the feature j appears in the corpus:
N
TTF; =)" W
i=1

o We can, thus, decide to trim certain tokens that are too uncommon.

= ¢.g. don’t appear 1n at least 3 documents at least 5 times.

14

Rare vs Frequenct Terms

Deciding which features to keep is a guesstimate about their informativeness.

So far we removed the words that appear too rarely to carry meaningful information.

But this leaves with a lot of very common words that are also not very informative.

Some of those could be removed with stopwords lists.

But stopwords lists are context independent and might not fit our specific task.

15

Weighting DTMs

One way to look at trimming is a form of weighting.

But this this 1s a rather crude way to weight features.

Instead what if we could devise a weighting scheme that would:
= Downweight rare and uninformative features;
= Downweight common and uninformative features;

= Upweight more informative features.

What trimming does is to assign a weight of O to certain features.

16

TF-IDF Weighting

« Most common weighting schemes is
term frequency-inverse document frequency (TF-IDF).

« Formally, the simplest version of TF-IDF weighting would then be:
N
TF-IDF;; = TF;; X IDF; = TF;; X —
DF;
« Effectively, what TF-IDF does is to:
= upweight terms that are frequent in a document but rare across the corpus.

= downweight terms that are either rare in a document or common across the corpus.

17

Varieties of TF-IDF Weighting

« We considered the most basic version of TF-IDF weighting.

e One of the most common versions takes the logarithm of the IDF component:

N
TF-IDF,'J' = TFij X lOg ﬁ
J

« This version is more robust to very rare terms that would otherwise get very high weights.

« E.g. the default version in sklearn prevents division-by-zero (if unused tokens are not
removed) and softens extremes by rescaling the IDF term:

1+ N
TF-IDF;; = TFy; x (log - == + 1)
J

Q Extra

Scikit-learn documentation on TF-IDF weighting

18

https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting

TF-IDF Weighting in R

e In R we can use the dfm_tfidf () function to apply TF-IDF weighting to our DFM.

« Note that we keep all the arguments to the default, but it’s something you might want to
adjust depending on your task:.

tfidf_dfm <- quanteda::dfm_tfidf(speeches_dfm)

tfidf_dfm
Document-feature matrix of: 2 documents, 8 features (43.75% sparse) and 0 docvars.
features
docs i thank the deputy please resume your seat
textl 0.30103 0.30103 0.301063 00 0 0 0
text2 0 0 0 0 0.30103 0.30103 0.30103 0.30103

« Compare it to the original DFM:

speeches_dfm

Document-feature matrix of: 2 documents, 8 features (43.75% sparse) and O docvars.

features
docs i thank the deputy please resume your seat
textl 1 1 1 1 0] 0] 0] 0]
text2 0 0] 0 1 1 1 1 1
- E.g. TD-IDF; = TF;; X log,, % =1X loglo% = 0.30103 for the feature i.
J

19

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

TF-IDF Weighting in Python

 In Python we can use the TfidfTransformer class to to the same effect.

« Note that the default scheme can vary across implementations, do check the documentation
for the exact formula.

tfidf_transformer = sklearn.feature_extraction.text.TfidfTransformer()
tfidf_dtm = tfidf_transformer.fit_transform(dtm)

vectorizer.get_feature_names_out()

array(['deputy', 'i', 'please', 'resume',6 'seat',6 'thank',6 'the', 'your'],
dtype=object)

tfidf_dtm.toarray()

array([[0.37997836, 0.53404633, 0. , 0. , 0. ,
0.53404633, 0.53404633, 0. 1,
[0.33517574, 0. , 0.47107781, 0.47107781, 0.47107781,
0. , 0. , 0.47107781]])

20

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

Dictionaries

Word Meanings

=~

Words have meanings =%

This allows us to take word usage as a proxy for the overall ‘meaning’ of a text.

Certain kinds of words indicate certain kind of ‘meanings’.

Kinds of ‘meanings’:

= Sentiment (e.g. positive, negative, etc.)

Emotions (e.g. anger, sad, happiness, etc.)

Topics (e.g. politics, sports, etc.)

Ideology (e.g. liberal, conservative, etc.)

Hate speech (e.g. sexism, homophobia, xenophobia, etc.)

22

Dictionaries

« Automated dictionary methods (ADM) exploit word usage to learn the ‘meanings’ of texts.
« Two steps:

1. Dictionary creation: Define a list of words that represent a certain ‘meaning’.

2. Dictionary application: Count the number of words in a text that are in the dictionary.

« Dictionaries should be task-appropriate and validated.

23

Dictionary Structure

« We have seen dictionaries in the context of Python:

ideo_dict = {
"liberal": ["benefits", "worker", "trade union"],
"conservative": ["restriction", "immigration", "reduction"]

}
 Essentially, a dictionary is a set of key-value pairs.
« In the context of text analysis:
= Keys - labels for equivalence classes for the concept of interest.

= Values - terms or patterns that are declared equivalent occurrences of the key class

24

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

Dictionary vs Thesaurus

A dictionary in a QTA sense is somewhat of a misnomer.

Substantively, a dictionary is closer to a thesaurus.

I.e. a list of canonical terms or concepts (‘keys’) associated with a list of synonyms.

But unlike thesauruses, ADM dictionaries:
= tend to be ‘exclusive’ (each value 1s associated with one key only)

= do not always identify synonyms

25

Qualitative & Quantitative Text
Analysis

« ADM dictionaries sit somewhere between more qualitative and fully automated approaches
to text analysis.

o It 1s ‘qualitative’ in a sense that it requires identification of concepts and textual features
associated with each of them.

 Dictionary construction involves a lot of contextual interpretation and qualitative judgment

« At the same time the application part is fully automated and perfectly reliable/replicable.

26

Some Famous Dictionaries

e General Inquirer (Stone et al. 1966): an early all-purpose
dictionary (e.g. sentiment analysis) in general texts.

e Regressive Imagery Dictionary: designed to measure
primordial vs. conceptual thinking.

e Linguistic Inquiry and Word Count (LIWC) (Pennebaker et
al. 2001): large (paid) dictionary for many psychological and
related concepts.

27

https://inquirer.sites.fas.harvard.edu/spreadsheet_guide.htm
https://psycnet.apa.org/record/1967-04539-000
http://www.kovcomp.co.uk/wordstat/RID.html
https://www.liwc.app/

Example: LexiCoder

« The LexiCoder Sentiment Dictionary (Young and Soroka 2012): a dictionary for
sentiment analysis in political texts, validated with human-coded news content.

data("data_dictionary_LSD2015", package = "quanteda.dictionaries")

str(data_dictionary_LSD2015)

Formal class 'dictionary2' [package "quanteda"] with 2 slots
..@ .Data:List of 4
..$:List of 1
.. ..% : chr [1:2858] "a lie" "abandon*" "abas*" "abattoir*"
..$:List of 1
.. ..% : chr [1:1709] "ability*" "abound*" "absolv*" "absorbent*"
..$:List of 1
.. ..% : chr [1:1721] "best not" "better not" "no damag*" "no no"
..$:List of 1
. ..$: chr [1:2860] "not a lie" "not abandon*" "not abas*" "not abattoir*"
..@ meta :List of 3
..$ system:List of 5
..$ package-version:Classes 'package_version', 'numeric_version' hidden 1list of 1
..$ @ dint [1:3] 1 9 9009

..$ r-version :Classes 'R_system_version', 'package_version', 'numeric_version' hidden list of 1
.. ..$: int [1:3] 36 2

..$ system : Named chr [1:3] "Darwin" "x86_64" "kbenoit"

.. ..- attr(*, "names")= chr [1:3] "sysname" "machine" "user"

..$ directory : chr "/Users/kbenoit/Dropbox (Personal)/GitHub/quanteda/quanteda"

.$ created : Date[1:1], format: "2020-02-17"

- -

https://doi.org/10.1080/10584609.2012.671234
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

Example: Laver and Garry (2000)

o A hierarchical set of categories to distinguish policy domains and policy positions.

« Derived from one of the longest content analysis exercises in political science - Manifesto
Project (previously known as CMP).

« Five domains at the top level of hierarchy:
= economy
= political system
= social system
= external relations
= “general” domain

« The dictionary was developed on a set of specific UK manifestos.

Q Extra

(Laver & Garry, 2000)

29

https://manifesto-project.wzb.eu/
https://manifesto-project.wzb.eu/
https://doi.org/10.2307/2669268

Example: Laver and Garry (2000)

« An accompanying quanteda.dictionaries package contains a lot of mentioned
dictionaries, including the Laver and Garry (2000) dictionary.

« Alternatively, you can download the ‘raw’ dictionary as text from
https://provalisresearch.com/Download/LaverGarry.zip

The package is not available on CRAN,
so need to install it from GitHub
remotes::install_github("kbenoit/quanteda.dictionaries")

data("data_dictionary_LaverGarry", package = "quanteda.dictionaries")
str(data_dictionary_LaverGarry)

Formal class 'dictionary2' [package "quanteda"] with 2 slots

..@ concatenator: chr " "
..@ names : chr [1:9] "CULTURE" "ECONOMY" "ENVIRONMENT" "GROUPS" ...
..@ .Data :List of 9
..$:List of 4
..$ CULTURE-HIGH :List of 1
.. ..% ! chr [1:8] "art" "artistic" "dance" "galler*" ...
..$ CULTURE-POPULAR:List of 1
.. ..$: chr "media"
..$ SPORT :List of 1
..$: chr "angler*"
. : chr [1:3] "people" "war_in_iraq" "civil_war"
..$:List of 3
..$ +STATE+:List of 1
..$: chr [1:50] "accommodation" "age" "ambulance" "assist" ...

https://provalisresearch.com/Download/LaverGarry.zip
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

.$

..$ =STATE=:List of 1
. .$: chr [1:71] "accountant" "accounting" "accounts" "advert*"
..$ -STATE-:List of 1
.$: chr [1:62] "assets" "autonomy" "barrier*" "bid"
:List of 2
..$ CON ENVIRONMENT:List of 1

30

Example: Dictionary Application

« Imagine we want to know which of the parties discusses immigration the most in their
electoral manifesto.

« We can start by creating a very simple dictionary to answer this question:

imm_dict <- quanteda::dictionary(list(
immigration = c("asylum*", "border*", "immigra*", "migrant*", "refugee*")

))

manifestos <- readr::read_csv("../data/ireland_ge_2024_manifestos.csv")

manifestos_toks <- quanteda::tokens(
manifestos$text,
remove_punct = TRUE,
remove_numbers = TRUE,
remove_symbols = TRUE

)

31

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

Example: Dictionary Application

« Now we can apply the dictionary to the manifestos:

manifestos_imm <- quanteda: :dfm(
quanteda: :tokens_lookup(manifestos_toks, dictionary = imm_dict)

)

manifestos_imm

Document-feature matrix of: 9 documents, 1 feature (0.00% sparse) and 0 docvars.

features
docs immigration
text1l 53
text2 24
text3 32
text4 24
texths 31
text6 31

[reached max_ndoc ... 3 more documents]

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

Calculating Quantities of Interest

« Of course, the absolute number of matched terms is not, necessarily, informative.

« In the immigration focus example we can use the total number of matched terms M; divided
by the total number of words in the document N;:

M,;

immigration_focus; =

Z

 If we were to try to scale the manifestos as pro- or anti- immigration (assuming we had a
relevant dictionary), we could then try something like:

j ro
Ml_antl _ Mip
N,

immigration_position; =

« In other words, we would calculate an absolute proportional difference.

33

Scaling

The previously described approach was used extensively in Manifesto Project.

The problems, however, are:
= Addition of irrelevant content shifts the scale toward zero.

= Assumes the additional mentions increase emphasis in a linear scale

One alternative (Laver & Garry, 2000):

anti __ pro
M, M:

immigration_position; = .
— anti pro
M+ M

Another alternative (Lowe, Benoit, Mikhaylov & Laver, 2011):

anti

M;
pro
i

immigration_position; = log

34

https://manifesto-project.wzb.eu/
https://doi.org/10.2307/2669268
https://doi.org/10.1111/j.1939-9162.2010.00006.x

Example: Dictionary Application

immigration_focus <- cbind(

manifestos,
quanteda: :convert(manifestos_imm, to = "data.frame")
) |>

(\(df) transform(df, ntokens = quanteda::ntoken(manifestos_toks)))() |>
(\(df) transform(df, rel_imm immigration/ntokens))() |>

_[, c("party", "immigration", "ntokens", "rel_imm")] |>

(\(df) [(df, order(df$rel_imm, decreasing = TRUE),))()

immigration_focus

party immigration ntokens rel_imm
text5 IT 31 7295 0.0042494859
text7 PBP 26 11976 0.002171006087
text1 AO 53 27749 0.0019099787
text4 GR 24 29110 0.0008244589
text2 FF 24 33676 0.0007126737
text8 SD 36 58281 0.0006176970
text3 FG 32 52942 0.0006044350
text9 SF 28 48813 0.0005736177
text6 LAB 31 63107 0.0004912292

http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf
http://127.0.0.1:4609/04_lect_dict.html?print-pdf

What to Do with Dictionary Results

e Describe the results.
e Scale the results (neg. vs pos., pro vs anti, left vs right, etc.).
e Could be used as features in downstream tasks:

» Similarity measures (e.g. cosine)

= ML-based classification

» Topic modelling (seeded with keywords)

= Prompt engineering for generative Al

36

How to Build a Dictionary

1. Identify “extreme” texts with known positions.
« E.g. opposition leader and PM, one-star and five-star reviews, etc.

2. Search for differentially occurring words using word frequencies.

3. Examine these words in context to assess their sensitivity and specificity.

4. Examine inflected forms to see whether stemming or wildcarding 1s required.

5. Use these words (or stems/lemmas) for categories.

37

Dictionary Performance

BBC Twitter Digg
8 i
29 1. : 2
) I
=
SS AN LM LC ML IB S5 AN LM LC ML LM LC
YouTube Blogs
] LB: LexiconBased
21 $S: SentiStrength
) AN: ANEW
291 e 3 LM: LabMT
- LC: Lexicoder
il ML: machine-learning
| algorithm
= AN LM LC ML AN LM LC ML e random benchmark

(Gonzdlez-Bail6n & Paltoglou, 2015)

https://doi.org/10.1177/0002716215569192

Dictionary vs Machine Learning

Accuracy Precision

SML

Dictionary:
SentiStrength

Dictionary:
Lexicoder

Dictionary:
21-Word Method

0% 20% 40% 60% 80% 0% 20% 40% 60% 80%
Performance Metric (% of Articles)

Figure 3. Performance of SML and Dictionary Classifiers—Accuracy and Precision.

Note: Accuracy (percent correctly classified) and precision (percent of positive predictions that are correct) for
the ground truth dataset coded by ten CrowdFlower coders. The dashed vertical lines indicate the baseline
level of accuracy or precision (on any category) if the modal category is always predicted. The corpus used in
the analysis is based on the keyword search of The New York Times 1980-2011 (see the text for details).

(Barbera, Boydstun, Linn, McMahon & Nagler, 2021)

39

https://doi.org/10.1017/pan.2020.8

Next

e Tutorial: Dictionaries and text classification

e Next week: Supervised modelling of text

40

