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Tokenisation
Say, we tokenised a single text:

But what if we have multiple texts?

text <- "The quick brown fox jumps over the lazy dog."1
tokens <- quanteda::tokens(text)2
tokens3

Tokens consisting of 1 document.
text1 :
 [1] "The"   "quick" "brown" "fox"   "jumps" "over"  "the"   "lazy"  "dog"  
[10] "."    
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Document-Term Matrix (DTM)
Imagine in addition to the text above, we have another one:

text2 <- "The quick brown fox jumps over the lazy cat."1

If we were to create a document-term matrix (DTM), it would look like this:

Document brown cat dog fox jumps lazy over quick the

1 1 0 1 1 1 1 1 1 2

2 1 1 0 1 1 1 1 1 2

Where each row corresponds to a document and each column to a token.

In math terms, a matrix  of  documents (rows) and  terms (columns),

where each  shows the number of times the th term appears in the th document.

also referred to as the term frequency of term  in document .

𝐖 𝑁 𝐽

𝑊𝑖𝑗 𝑗 𝑖
𝑗 𝑖
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DTM
In real life the documents are unlikely to have as much overlap.

A more realistic example of 2 texts would be something like this:

speech1 <- "I thank the Deputy."1
speech2 <- "Deputy, please resume your seat."2

If we we were to create a document-term matrix, it would look like this:

Document deputy i please resume seat thank the your

1 1 1 0 0 0 1 1 0

2 1 0 1 1 1 0 0 1

This is quite a few zeros!
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Sparse Matrix
In practice, DTMs are often stored as sparse matrices.

Such matrix only stores non-zero values and their positions.

library("Matrix")1
sm <- Matrix::sparseMatrix(2
  i = c(1, 1, 1, 1, 2, 2, 2, 2, 2),3
  j = c(1, 2, 6, 7, 1, 3, 4, 5, 8),4
  x = c(1, 1, 1, 1, 1, 1, 1, 1, 1),5
  dims = c(2, 8),6
  dimnames = list(7
    c("Doc1", "Doc2"),8
    c("deputy", "i", "please", "resume", "seat", "thank", "the", "your"))9
)10
sm11

2 x 8 sparse Matrix of class "dgCMatrix"
     deputy i please resume seat thank the your
Doc1      1 1      .      .    .     1   1    .
Doc2      1 .      1      1    1     .   .    1

Of course, we will not be creating these matrices manually.
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DTM in R
In R we can use the quanteda package to create DTMs.

library("quanteda")1

We start by tokenising our small corpus:

speeches <- c(speech1, speech2)1
speeches_toks <- quanteda::tokens(tolower(speeches), remove_punct = TRUE)2
speeches_toks3

Tokens consisting of 2 documents.
text1 :
[1] "i"      "thank"  "the"    "deputy"

text2 :
[1] "deputy" "please" "resume" "your"   "seat"  

Then we create a DTM (or, as it is called here, a document-feature matrix (DFM)):

speeches_dfm <- quanteda::dfm(speeches_toks)1
speeches_dfm2

Document-feature matrix of: 2 documents, 8 features (43.75% sparse) and 0 docvars.
       features
docs    i thank the deputy please resume your seat
  text1 1     1   1      1      0      0    0    0
  text2 0     0   0      1      1      1    1    1
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DTM in Python
In Python we can use the ML library sklearn to work with DTMs.

import sklearn1

speeches = ["I thank the Deputy.", "Deputy, please resume your seat."]1
vectorizer = sklearn.feature_extraction.text.CountVectorizer(token_pattern = r"\b\w+\b")2
dtm = vectorizer.fit_transform(speeches)3
dtm4

<Compressed Sparse Row sparse matrix of dtype 'int64'
    with 9 stored elements and shape (2, 8)>

To see the tokenised features:

vectorizer.get_feature_names_out()1

array(['deputy', 'i', 'please', 'resume', 'seat', 'thank', 'the', 'your'],
      dtype=object)

To see the DTM as an array:

dtm.toarray()1

array([[1, 1, 0, 0, 0, 1, 1, 0],
       [1, 0, 1, 1, 1, 0, 0, 1]])
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Bag of Words
This representation of text is also known as bag-of-words.

The key aspects of this approach are:

Single words are considered as relevant features of each
document.

Documents are quantified by counting occurrences of words.

Word order is ignored.

Grammar and syntax are discarded.
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Why Bag of Words?
Simple.

Efficient.

Works well in many cases.

Can be extended (co-occurrences aka “n-grams”)

Has been extensively used and validated in social sciences.

Of course, there are cases when word order matters (e.g. text
reuse).
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Trimming DTMs
As we have seen, by default, most DTMs tend to be very sparse.

This can be a problem as this results in computational inefficiencies.

It might also be the case that not tokens are equally informative.

Some examples of trimming features that we have already encountered:

removing punctuation

removing stopwords

creating equivalence classes through stemming/lemmatisation

A more structured way would be to trim by frequency

13



Trimming by Frequency
Document frequency of term  counts how many documents contain the feature :𝑗 𝑗

= 𝟙( > 0)DF𝑗 ∑
𝑖=1

𝑁

𝑊𝑖𝑗

Total term frequency of term  counts how many times the feature  appears in the corpus:𝑗 𝑗

=TTF𝑗 ∑
𝑖=1

𝑁

𝑊𝑖𝑗

We can, thus, decide to trim certain tokens that are too uncommon.

e.g. don’t appear in at least 3 documents at least 5 times.
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Rare vs Frequenct Terms
Deciding which features to keep is a guesstimate about their informativeness.

So far we removed the words that appear too rarely to carry meaningful information.

But this leaves with a lot of very common words that are also not very informative.

Some of those could be removed with stopwords lists.

But stopwords lists are context independent and might not fit our specific task.
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Weighting DTMs
One way to look at trimming is a form of weighting.

What trimming does is to assign a weight of  to certain features.

But this this is a rather crude way to weight features.

Instead what if we could devise a weighting scheme that would:

Downweight rare and uninformative features;

Downweight common and uninformative features;

Upweight more informative features.

0
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TF-IDF Weighting
Most common weighting schemes is
term frequency-inverse document frequency (TF-IDF).

Formally, the simplest version of TF-IDF weighting would then be:

Effectively, what TF-IDF does is to:

upweight terms that are frequent in a document but rare across the corpus.

downweight terms that are either rare in a document or common across the corpus.

= × = ×TF-IDF𝑖𝑗 TF𝑖𝑗 IDF𝑗 TF𝑖𝑗
𝑁
DF𝑗
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Varieties of TF-IDF Weighting
We considered the most basic version of TF-IDF weighting.

One of the most common versions takes the logarithm of the IDF component:

This version is more robust to very rare terms that would otherwise get very high weights.

E.g. the default version in sklearn prevents division-by-zero (if unused tokens are not
removed) and softens extremes by rescaling the IDF term:

= × logTF-IDF𝑖𝑗 TF𝑖𝑗
𝑁
DF𝑗

= × (log + 1)TF-IDF𝑖𝑗 TF𝑖𝑗
1 +𝑁
1 + DF𝑗

Extra

Scikit-learn documentation on TF-IDF weighting
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TF-IDF Weighting in R
In R we can use the dfm_tfidf() function to apply TF-IDF weighting to our DFM.

Note that we keep all the arguments to the default, but it’s something you might want to
adjust depending on your task:.

tfidf_dfm <- quanteda::dfm_tfidf(speeches_dfm)1
tfidf_dfm2

Document-feature matrix of: 2 documents, 8 features (43.75% sparse) and 0 docvars.
       features
docs          i   thank     the deputy  please  resume    your    seat
  text1 0.30103 0.30103 0.30103      0 0       0       0       0      
  text2 0       0       0            0 0.30103 0.30103 0.30103 0.30103

Compare it to the original DFM:

speeches_dfm1

Document-feature matrix of: 2 documents, 8 features (43.75% sparse) and 0 docvars.
       features
docs    i thank the deputy please resume your seat
  text1 1     1   1      1      0      0    0    0
  text2 0     0   0      1      1      1    1    1

E.g.  for the feature i.= × = 1 × 𝑙𝑜 = 0.30103TD-IDF𝑖 TF𝑖𝑗 log10 𝑁
DF𝑗

𝑔10 2
1
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TF-IDF Weighting in Python
In Python we can use the TfidfTransformer class to to the same effect.

Note that the default scheme can vary across implementations, do check the documentation
for the exact formula.

tfidf_transformer = sklearn.feature_extraction.text.TfidfTransformer()1
tfidf_dtm = tfidf_transformer.fit_transform(dtm)2

vectorizer.get_feature_names_out()1

array(['deputy', 'i', 'please', 'resume', 'seat', 'thank', 'the', 'your'],
      dtype=object)

tfidf_dtm.toarray()1

array([[0.37997836, 0.53404633, 0.        , 0.        , 0.        ,
        0.53404633, 0.53404633, 0.        ],
       [0.33517574, 0.        , 0.47107781, 0.47107781, 0.47107781,
        0.        , 0.        , 0.47107781]])
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Dictionaries
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Word Meanings
Words have meanings 🧐

This allows us to take word usage as a proxy for the overall ‘meaning’ of a text.

Certain kinds of words indicate certain kind of ‘meanings’.

Kinds of ‘meanings’:

Sentiment (e.g. positive, negative, etc.)

Emotions (e.g. anger, sad, happiness, etc.)

Topics (e.g. politics, sports, etc.)

Ideology (e.g. liberal, conservative, etc.)

Hate speech (e.g. sexism, homophobia, xenophobia, etc.)

22



Dictionaries
Automated dictionary methods (ADM) exploit word usage to learn the ‘meanings’ of texts.

Two steps:

1. Dictionary creation: Define a list of words that represent a certain ‘meaning’.

2. Dictionary application: Count the number of words in a text that are in the dictionary.

Dictionaries should be task-appropriate and validated.
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Dictionary Structure
We have seen dictionaries in the context of Python:

ideo_dict = {1
  "liberal": ["benefits", "worker", "trade union"],2
  "conservative": ["restriction", "immigration", "reduction"]3
  }4

Essentially, a dictionary is a set of key-value pairs.

In the context of text analysis:

Keys - labels for equivalence classes for the concept of interest.

Values - terms or patterns that are declared equivalent occurrences of the key class
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Dictionary vs Thesaurus
A dictionary in a QTA sense is somewhat of a misnomer.

Substantively, a dictionary is closer to a thesaurus.

I.e. a list of canonical terms or concepts (‘keys’) associated with a list of synonyms.

But unlike thesauruses, ADM dictionaries:

tend to be ‘exclusive’ (each value is associated with one key only)

do not always identify synonyms

25



Qualitative & Quantitative Text
Analysis

ADM dictionaries sit somewhere between more qualitative and fully automated approaches
to text analysis.

It is ‘qualitative’ in a sense that it requires identification of concepts and textual features
associated with each of them.

Dictionary construction involves a lot of contextual interpretation and qualitative judgment

At the same time the application part is fully automated and perfectly reliable/replicable.
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Some Famous Dictionaries
 ( ): an early all-purpose

dictionary (e.g. sentiment analysis) in general texts.

: designed to measure
primordial vs. conceptual thinking.

 (Pennebaker et
al. 2001): large (paid) dictionary for many psychological and
related concepts.

General Inquirer Stone et al. 1966

Regressive Imagery Dictionary

Linguistic Inquiry and Word Count (LIWC)
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Example: LexiCoder
The LexiCoder Sentiment Dictionary ( ): a dictionary for
sentiment analysis in political texts, validated with human-coded news content.

Young and Soroka 2012

data("data_dictionary_LSD2015", package = "quanteda.dictionaries")1

str(data_dictionary_LSD2015)1

Formal class 'dictionary2' [package "quanteda"] with 2 slots
  ..@ .Data:List of 4
  .. ..$ :List of 1
  .. .. ..$ : chr [1:2858] "a lie" "abandon*" "abas*" "abattoir*" ...
  .. ..$ :List of 1
  .. .. ..$ : chr [1:1709] "ability*" "abound*" "absolv*" "absorbent*" ...
  .. ..$ :List of 1
  .. .. ..$ : chr [1:1721] "best not" "better not" "no damag*" "no no" ...
  .. ..$ :List of 1
  .. .. ..$ : chr [1:2860] "not a lie" "not abandon*" "not abas*" "not abattoir*" ...
  ..@ meta :List of 3
  .. ..$ system:List of 5
  .. .. ..$ package-version:Classes 'package_version', 'numeric_version'  hidden list of 1
  .. .. .. ..$ : int [1:3] 1 9 9009
  .. .. ..$ r-version      :Classes 'R_system_version', 'package_version', 'numeric_version'  hidden list of 1
  .. .. .. ..$ : int [1:3] 3 6 2
  .. .. ..$ system         : Named chr [1:3] "Darwin" "x86_64" "kbenoit"
  .. .. .. ..- attr(*, "names")= chr [1:3] "sysname" "machine" "user"
  .. .. ..$ directory      : chr "/Users/kbenoit/Dropbox (Personal)/GitHub/quanteda/quanteda"
  .. .. ..$ created        : Date[1:1], format: "2020-02-17"

$ bj t Li t f 2
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Example: Laver and Garry (2000)
A hierarchical set of categories to distinguish policy domains and policy positions.

Derived from one of the longest content analysis exercises in political science - 
 (previously known as CMP).

Five domains at the top level of hierarchy:

economy

political system

social system

external relations

“general” domain

The dictionary was developed on a set of specific UK manifestos.

( )

Manifesto
Project

Extra

Laver & Garry, 2000
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Example: Laver and Garry (2000)
An accompanying quanteda.dictionaries package contains a lot of mentioned
dictionaries, including the Laver and Garry (2000) dictionary.

Alternatively, you can download the ‘raw’ dictionary as text from
https://provalisresearch.com/Download/LaverGarry.zip

# The package is not available on CRAN,1
# so need to install it from GitHub2
remotes::install_github("kbenoit/quanteda.dictionaries")3

data("data_dictionary_LaverGarry", package = "quanteda.dictionaries")1

str(data_dictionary_LaverGarry)1

Formal class 'dictionary2' [package "quanteda"] with 2 slots

  ..@ concatenator: chr " "
  ..@ names       : chr [1:9] "CULTURE" "ECONOMY" "ENVIRONMENT" "GROUPS" ...
  ..@ .Data       :List of 9
  .. ..$ :List of 4
  .. .. ..$ CULTURE-HIGH   :List of 1
  .. .. .. ..$ : chr [1:8] "art" "artistic" "dance" "galler*" ...
  .. .. ..$ CULTURE-POPULAR:List of 1
  .. .. .. ..$ : chr "media"
  .. .. ..$ SPORT          :List of 1
  .. .. .. ..$ : chr "angler*"
  .. .. ..$                : chr [1:3] "people" "war_in_iraq" "civil_war"
  .. ..$ :List of 3
  .. .. ..$ +STATE+:List of 1
  .. .. .. ..$ : chr [1:50] "accommodation" "age" "ambulance" "assist" ...
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  .. .. ..$ =STATE=:List of 1
  .. .. .. ..$ : chr [1:71] "accountant" "accounting" "accounts" "advert*" ...
  .. .. ..$ -STATE-:List of 1
  .. .. .. ..$ : chr [1:62] "assets" "autonomy" "barrier*" "bid" ...
  .. ..$ :List of 2
  .. .. ..$ CON ENVIRONMENT:List of 1

$ h " d *"
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Example: Dictionary Application
Imagine we want to know which of the parties discusses immigration the most in their
electoral manifesto.

We can start by creating a very simple dictionary to answer this question:

imm_dict <- quanteda::dictionary(list(1
  immigration = c("asylum*", "border*", "immigra*", "migrant*", "refugee*")2
))3

manifestos <- readr::read_csv("../data/ireland_ge_2024_manifestos.csv")1

manifestos_toks <- quanteda::tokens(1
  manifestos$text,2
  remove_punct = TRUE,3
  remove_numbers = TRUE,4
  remove_symbols = TRUE5
)6
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Example: Dictionary Application
Now we can apply the dictionary to the manifestos:

manifestos_imm <- quanteda::dfm(1
  quanteda::tokens_lookup(manifestos_toks, dictionary = imm_dict)2
)3

manifestos_imm1

Document-feature matrix of: 9 documents, 1 feature (0.00% sparse) and 0 docvars.
       features
docs    immigration
  text1          53
  text2          24
  text3          32
  text4          24
  text5          31
  text6          31
[ reached max_ndoc ... 3 more documents ]
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Calculating Quantities of Interest
Of course, the absolute number of matched terms is not, necessarily, informative.

In the immigration focus example we can use the total number of matched terms  divided
by the total number of words in the document :

𝑀𝑖
𝑁𝑖

=immigration_focus𝑖
𝑀𝑖

𝑁𝑖

If we were to try to scale the manifestos as pro- or anti- immigration (assuming we had a
relevant dictionary), we could then try something like:

=immigration_position𝑖
−𝑀 𝑎𝑛𝑡𝑖

𝑖 𝑀 𝑝𝑟𝑜
𝑖

𝑁𝑖

In other words, we would calculate an absolute proportional difference.
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Scaling
The previously described approach was used extensively in .

The problems, however, are:

Addition of irrelevant content shifts the scale toward zero.

Assumes the additional mentions increase emphasis in a linear scale

Manifesto Project

One alternative ( ):Laver & Garry, 2000

=immigration_position𝑖
−𝑀 𝑎𝑛𝑡𝑖

𝑖 𝑀 𝑝𝑟𝑜
𝑖

+𝑀 𝑎𝑛𝑡𝑖
𝑖 𝑀 𝑝𝑟𝑜

𝑖

Another alternative ( ):Lowe, Benoit, Mikhaylov & Laver, 2011

= logimmigration_position𝑖
𝑀 𝑎𝑛𝑡𝑖

𝑖

𝑀 𝑝𝑟𝑜
𝑖
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Example: Dictionary Application
immigration_focus <- cbind(1
  manifestos,2
  quanteda::convert(manifestos_imm, to = "data.frame")3
) |>4
  (\(df) transform(df, ntokens = quanteda::ntoken(manifestos_toks)))() |>5
  (\(df) transform(df, rel_imm = immigration/ntokens))() |>6
  _[, c("party", "immigration", "ntokens", "rel_imm")] |>7
  (\(df) `[`(df, order(df$rel_imm, decreasing = TRUE),))()8

immigration_focus1

      party immigration ntokens      rel_imm
text5    II          31    7295 0.0042494859
text7   PBP          26   11976 0.0021710087
text1    AO          53   27749 0.0019099787
text4    GR          24   29110 0.0008244589
text2    FF          24   33676 0.0007126737
text8    SD          36   58281 0.0006176970
text3    FG          32   52942 0.0006044350
text9    SF          28   48813 0.0005736177
text6   LAB          31   63107 0.0004912292
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What to Do with Dictionary Results
Describe the results.

Scale the results (neg. vs pos., pro vs anti, left vs right, etc.).

Could be used as features in downstream tasks:

Similarity measures (e.g. cosine)

ML-based classification

Topic modelling (seeded with keywords)

Prompt engineering for generative AI
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How to Build a Dictionary
1. Identify “extreme” texts with known positions.

E.g. opposition leader and PM, one-star and five-star reviews, etc.

2. Search for differentially occurring words using word frequencies.

3. Examine these words in context to assess their sensitivity and specificity.

4. Examine inflected forms to see whether stemming or wildcarding is required.

5. Use these words (or stems/lemmas) for categories.
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Dictionary Performance

(González-Bailón & Paltoglou, 2015)
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https://doi.org/10.1177/0002716215569192


Dictionary vs Machine Learning

(Barberá, Boydstun, Linn, McMahon & Nagler, 2021)
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Next
Tutorial: Dictionaries and text classification

Next week: Supervised modelling of text
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