Week 2 Tutorial:
Regular Expressions

POP77032 Quantitative Text Analysis for Social Scientists



Exercise 1: Working with Regular Expressions

« In this exercise we will consider parliamentary debates using the US Congressional Record data.

« A common task when working with unstructured text data is to preprocess it to extract relevant information.

« Here we will focus on extracting speakers and speeches from the Congressional Record HTML files.

« As an example, we will consider the debate on the second impeachment of Donald Trump that took place on 13 January 2021.

« After downloading the texts of the debates, our first goal would be to extract the names of individual speakers and speeches using
regular expressions.

« The empirical question that we are trying to answer is: how many unique speakers took part in the debate?
« The key part of this exercise is to build a regular expression that can accurately identify speakers’ names.

« Take some time to analyse the structure of speakers’ names and what aspects distinguish those from surrounding text.


https://www.govinfo.gov/app/collection/crec/

1 library("rvest")

2 library("stringr")
1 # As the full impeachment debate is split across two sections,
2 # we will first download both HTML files and then combine them in single text
3 1impeachmentl <- rvest::read_html(
4 "https://www.govinfo.gov/content/pkg/CREC-2021-01-13/html/CREC-2021-01-13-pt1-PgH151-8.htm"
5 )
6 1impeachment2 <- rvest::read_html(
7 "https://www.govinfo.gov/content/pkg/CREC-2021-01-13/html/CREC-2021-01-13-pt1-PgH165.htm"
8 )
1 # Extract text from the first URL
2 txtl <- rvest::html _text(rvest::html _nodes(impeachment1, "pre"))
3 nchar(txtl)
[1] 126613

1 # Extract text from the second URL
2 txt2 <- rvest::html_text(rvest::html _nodes(impeachment2, "pre"))
3 nchar(txt2)

[1] 231550

1 txt <- paste@(txti, "\n", txt2)
2 nchar(txt)

[1] 358164



http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf

String Distances




String Distance

« While regular expressions allow us to capture different strings,
« Sometimes it is useful to know just how different these strings are.
« The simplest way is to consider difference between individual words.

o Consider these words:

cut
and
cats

- How different are they?



Edit Distance

One way to think about the difference is to count the number of editing operations required
to transform one string into another.

Think about what it takes to fix typo(s) in text.

Most common operations would be:
= Insertion
= Deletion

= Substitution

In our example this 1s what it might look like:

cut —substitute u — a (1)—» cat ——insert s (1)—» cats




Alignment

« An alternative way of representing the difference between two strings is through their
alignment.

« This 1s a correspondence between substrings of the two sequences.

C u T s




Levenstein Distance

The only remaining aspect of calculating the edit distance is
to assign costs to each of the operations.

In the simplest case we can assign a cost of 1 to each operation.

This is also known as the Levenshtein distance.

import textdistance
textdistance. levenshtein.distance("cut", "cats")

library("stringdist")
stringdist::stringdist("cut", "cats", method = "1lv")

[1] 2


http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf
http://127.0.0.1:5737/02_tut_regex.html?print-pdf

Exercise 2: Working with String
Distances

« Now that we have extracted individual speeches, we might be interested in finding similar
speeches.

« One way to measure similarity between texts is to use string distance metrics.

 Try using one of the common string distance metrics such as Levenshtein distance, Jaccard
distance, etc. to find the most similar speeches in the debate.

« In R you can use the stringdist package to calculate various string distance metrics.
 In Python you can use the textdistance library to calculate string distances.

« What kind of speeches would you expect to be most similar to each other?



