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So Far

e Quantitative research involves collecting data - a sample of observations selected
from a larger population, in which one or more variables are measured for each
observation.

e The goal of collecting data is usually to calculate statistics which can be used to
infer parameters of a population.

e Variables can be measure on different scales, which determine which statistics are

applicable.
o Measures of central tendency describe a typical observation.

e Measures of variability describe the spread of the variable.



Topics for Today

e Probability
e Random variables
e Probability distributions

e Normal distribution



Today’s Plan

Outcomes & Probabilit Random Probability
Events y Variables Distributions




Probability



Why Probability?

e Probability describes the uncertainty about our sample.

e Inference (i.e. statistical inference) allows us to make
conclusions about the population.
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Example: Sortition

Imagine a world in which political candidates are selected by lot (sortition).

Three Parties:

e Left Party &
e Right Party i
e Green Party @

Candidates can be of two genders:

e Female [}
e Male 4

Six possible candidates:

o .£ EB%) o 2B)=) o & (E1®)
e £ E%) e O (Ed)




Example Continued: Sortition

e Hypothetical trial: roll a @ to pick a candidate.
e Uncertainty: we don’t know which candidate will be selected.

e One possible outcome:
picking & (E19)

e Sample space .S:
e L, 0 @ 9

e Anevent A:
selecting a [

e Any of these outcomes would make us say that an event A has occurred:

(v, &, )



What is Probability?

e Probability P(A) represents how likely is an event A to
occur.

e If all outcomes are equally likely:

P(A) = Number of elements in A

Number of elements in .S

e Sortition example:

= Probability of selecting £

NN OV W

= D=

» Probability of selecting Tar:
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The Basics of Probability

e Probability is a property of events.

e The same event can occur when different outcomes are
observed.

e One outcome is a draw from all possible outcomes

(sample space).

e We are not interested in events per se, but the properties
of the events.

¢ The more individual events we observe, the closer our
estimates are to population parameters.
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Approaches to Probability

e Frequentist: long-run frequency over a large number of repeated events.
e Bayesian: degree of belief about the event in question.

e In frequentist view population parameters are fixed (but unknown).

e In Bayesian view population parameters are themselves random variables.

e In the rest of this class we will focus only on frequentist approach.

O Extra

Statistical Rethinking by Richard McElreath
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Frequentists vs Bayesians
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Probability Axioms

e Probabilities are always non-negative:
= P(A) > O for any event A

e Probabilities of all possible outcomes add up to 1:
= P(S) =1

o If two events A and B are mutually exclusive:

« P(A or B) = P(A) + P(B)
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Some Properties of Probability

e Probability of the complement:
« P(A°) = P(not A) = 1 — P(A)

-E.g.P(nOtl/l\n)=1—P('/'\')=1_%=%

= “Probability of not selecting a candidate from the Right Party is %”

e General addition rule:
» P(Aor B) = P(A) + P(B) — P(A and B)
= E.g.
PQRQor®) =PQ)+P® - PQand ®) = | + 1 — ; =

144

= “Probability of selecting a woman or a Green Party candidate is 3

3+2-1
6

4

6

15



Non-Naive Definition of
Probability

e The definition of probability from above:

P(A) = Number of elements in A

Number of elements in .S

is actually rather naive.

e There two big problems with it:
= All outcomes are assumed to be equally likely.
= All outcomes have to be listed.
e More generally, we can call probability any function that maps events to a real

number between O and 1.
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Random Variables




Random Variables

e How do we map the possible outcomes of sortition to numbers in our data?

e Using random variables.
e Consider the sample space:
+8, R,.8 0,8 9
e Let Y be the selection of a i candidate:
Y(£) = Y(&) = Y(&) = 1
Y(R)=Y(D)=Y(8)=0
e These 0’s and 1’s are what we actually see in our data.

e In other words, random variable Y provides the numerical summary of the
candidate draw with our question (selection of a £ candidate) in mind.

e The source of randomness is that we don’t know which candidate will be selected.
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Random Variables Continued

Imagine that instead of being interested of the selection of a £ candidate we are
interested in selection of a @ candidate.

We have the same sample space: {2, &, .2, @, &, .8}

But another random variable X maps the same outcomes differently than Y :
X() = X(2) = X(8) =X(2) =0

X =X(®) =1

Alternatively, rather than focussing on @, we may choose the variable X to map
the selection of a candidate from any party such that:

X(:8) = X(R) = 1 for
X(:®) = X(R) =2 for
X&) = X(.®) =3 for @

Note that since these all are categorical variables the actual numbers assigned by
random variables are somewhat arbitrary.
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Discrete and Continuous Random
Variables

e Imagine we observe one event.

e We want to know what is the probability that the random variable associated with
this event takes on a certain value.

e But that depends on what are the potential values that this random variable can
take.

e This hinges on whether the measurement scale is discrete or continuous.

e Probability works slightly differently for them.
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Example: Discrete Random
Variable

0.6 1

o
NN
1

Proportion of countries
o
Mo

0.01
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Discrete Random Variables

e A random variable that takes on a countable number of values.

e Describes the data measured on nominal and ordinal scales.

e Probability distribution of a discrete random variable assigns probability to each
possible value of the variable.

“Eg P(®) =1

e We can write out all the individual probabilities for such variables:

Party P(Y)
v, 0.33
w 0.33

= 0.33
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Example: Continuous Random
Variable

0.03 1

0.02 1

oo |I|||||||‘|||‘|‘ “|||““|||‘||||‘||‘||‘||||‘|||‘““||||||||IIIIIIIII'III“II|I|||||||| -

25000 50000 75000 100000
ual Household Disposable Income of Individuals (UK, £)

Proportion of individuals
o
o

)




Continuous Random Variables

e What is the probability that someone’s income is exactly £39, 674.39?

e For specific values it’s always 0.

e Continuous random variables take an infinite number of possible values.

e Probability distribution for continuous variables assigns probabilities for intervals.

e S50, we can calculate the probability that someone’s income, for example, is

between £40, 000 and £50, 000 or > 30, 000.

e Those are defined with formulas and involve calculus, but we will use R instead
(more in the workshop).
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Example: Continuous Random
Variable

0.03 1

0.02 1

25000 40000 50000 75000 100000
Annual Household Disposable Income of Individuals (UK, £)

Proportion of individuals
o
o

)




Probability
Distributions




Probability Distribution

e Probability distribution assigns probabilities to values taken by random
variables.

o Discrete distributions assign probabilities to individual values.
e Continuous distributions assign probability to intervals.

e Probability distributions are defined using mathematical formulas.

But graphical representations provide a good intuition.
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Discrete Distribution

0.201
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P(X = Xi)
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0.00
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Discrete Distribution
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Continuous Distribution
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Continuous Distribution
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Normal Probability Distribution

e The most important probability distribution.
e Asit:
= Approximates the distribution of many variables in the real world.

m s used a lot in inferential statistics.

o Itis symmetric, bell-shaped and fully described by its mean y and variance o’

e Can also be called normal distribution for short.

e We can denote it as:

Y ~ N(u,c”)

“Y is distributed according to a normal distribution with mean y and variance
2 144
o°.
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Normal Distribution
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Normal Distribution
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Normal Distribution

0.51
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Normal Distribution
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Normal Distribution
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Normal Distribution
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Example: Climate Change
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IPCC - Intergovernmental Panel on Climate Change


https://www.ipcc.ch/report/ar3/wg1/the-climate-system-an-overview/
https://www.ipcc.ch/report/ar3/wg1/the-climate-system-an-overview/

Standard Normal Distribution

e To calculate probabilities for a normal variable with a general mean and variance,
we must standardise the variable by first subtracting the mean, then by dividing
the result by the standard deviation:

X — Ux
O x

A

e /-scores indicate the number of standard deviation units a value is from the mean
of a distribution.

e Standard normal distribution is the normal distribution with mean ¢ = 0 and
variance 6> = 1 and can be denoted as N (0, 1).
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Standard Normal Distribution
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y? Distribution

e ¥ 2 (pronounced chi-squared) distribution
e Shape depends on the degrees of freedom (more later)

e Used to analyse contingency tables.

0.51
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[ Distribution

e 1 distribution is bell shaped and and symmetric around the mean of 0.

e In comparison to the standard normal distribution its standard error is a bit larger
than 1 and depends on the degrees of freedom.

e Used to compare means of variables between different groups (more later).

0.41
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Next

e Workshop:
= Probability Distributions
e Next week:

= Hypothesis Testing
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