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So Far
• The goal of collecting data is usually to calculate statistics which can be used to

infer parameters of a population.

• Variables can be measure on different scales, which determine which statistics are

applicable.

• Measures of central tendency describe a typical case in our data.

• Measures of variability show how far away from a typical case are other

observations.

• For discrete random variables we can calculate point probability of getting specific

values.

• For continuous random variables we can only estimate the probability of a value

falling within some interval.
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Topics for Today

• Sampling distributions

• Central Limit Theorem

• Confidence intervals

• Null and alternative hypotheses

• Significance testing
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Today’s Plan

Sample
Point

Estimate

Interval

Estimate

Hypothesis

Testing
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Review: Normal Probability
Distribution
• The most important probability distribution.

• As it:

▪ Approximates the distribution of many variables in the real world.

▪ Is used a lot in inferential statistics.

• It is symmetric, bell-shaped and fully described by its mean  and variance .

• Can also be called normal distribution for short.

• We can denote it as:

“  is distributed according to a normal distribution with mean  and variance

.”

𝜇 𝜎2

𝑌 ∼ 𝑁(𝜇, )𝜎2

𝑌 𝜇
𝜎2
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Review: Normal Probability
Distribution
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Example: Climate Change

IPCC - Intergovernmental Panel on Climate Change

7

https://www.ipcc.ch/report/ar3/wg1/the-climate-system-an-overview/
https://www.ipcc.ch/report/ar3/wg1/the-climate-system-an-overview/


Sampling
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From Sample to Population

• We know how to describe some variable in a sample.

• But we are not typically interested in learning about a

sample.

• What we really want to know is:

▪ Whether these characteristics of a variable or an

association between variables are true in the population.

Probability

Inference

Population Sample
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Survey Research

Wikipedia
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https://en.wikipedia.org/wiki/Dewey_Defeats_Truman
https://en.wikipedia.org/wiki/Dewey_Defeats_Truman


Not Survey Research

X (Twitter)
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https://twitter.com/elonmusk/status/1525291586669531137
https://twitter.com/elonmusk/status/1525291586669531137


Sampling Bias

Sketchplanations
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https://sketchplanations.com/sampling-bias
https://sketchplanations.com/sampling-bias


Example: 2016 UK EU Referendum
• On 23 June 2016  of  voters cast their ballots in favour of leaving the  and 

voted to remain.

• Between 14 April and 4 May 2016 British Election Study (BES) conducted Wave 7 of its internet

panel.

• This study included  respondents, of whom  provided answer to the question: “If

there was a referendum on Britain’s membership of the European Union, how do you think you would

vote?”

▪  - Stay in the EU

▪  - Leave the EU

• In other words,  of the respondents favoured remaining and  leaving.

• How certain can one be that in the population less than  of voters favour Leave?

, 

51.89% 48.11%

30, 895 28, 044

14, 352
13, 692

51.2% 48.8%
50%

Source

Fieldhouse et al. (2016) Hobolt (2016)
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https://doi.org/10.5255/UKDA-SN-8202-2
https://doi.org/10.1080/13501763.2016.1225785
https://doi.org/10.5255/UKDA-SN-8202-2
https://doi.org/10.1080/13501763.2016.1225785


Point Estimation
• Point estimate provides a single ‘best guess’ about the population parameter.

• Examples of quantities of interest:

▪ , the population mean𝜇 = 𝐸(𝑌 )
▪ , the population variance= 𝑉 𝑎𝑟(𝑌 )𝜎2

▪ , the difference between two groups− = 𝐸[𝑌 (1)] − 𝐸[𝑌 (0)]𝜇1 𝜇0

• In   referendum example we are interested in the proportion of voters who

support Leave.
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Estimating Parameters
• How do we estimate the population parameter of interest?

• Using estimators.

• There are many different possible esimators. E.g.:

▪ , the sample proportion of voters supporting Leave𝑌

▪ , just use the first observation𝑌1

▪ , always guess  support0.5 50%
• Note that sample proportion is the same as the sample mean:

= =𝑌
∑𝑛

𝑖=1 𝑌𝑖

𝑛
# of respondents supporting Leave

𝑛

• Sample proportion is on average equal to the population proportion (unbiased

estimator).
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Inference for UK EU Referendum
• The total number of eligible voters in the  was  million.46.5
• The study collects responses from  people.28, 044
• How sure can one be in the accuracy of the results in this sample?

• Let’s outline the statistical way of thinking about it:

▪ Suppose in the population the true percentage of pro-Leave voters is .50%
▪ How likely we are to get a point estimate of  in a sample?48.8%
▪ Note that we can formulate this question either relative to pro-Leave or pro-

Remain voters.

▪ Here we will denote pro-Leave voters with  and pro-Remain with .1 0
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Simulating Sample
• Let’s start by creating our population and then drawing one sample from it.

• We will simulate the entire process in R.

voters <- c(rep(1, 46500000/2), rep(0, 46500000/2)) # Create population1

voters <- sample(voters, length(voters)) # Shuffle voters1

sample_voters <- sample(voters, 28044) # Draw a random sample of 28,0441

prop.table(table(sample_voters)) # Calculate the proportions of Leave/Remain1

sample_voters
        0         1 
0.5072386 0.4927614 

prop.table(table(sample_voters))[2] # Select the proportion of pro-Leave voters1

        1 
0.4927614 
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Simulating Sample Continued
• Now let’s repeat drawing a sample  times.1, 000

# Draw a sample of 28,044 from the population of UK voters 1000 times1
samples_voters <- sapply(1:1000, function(x) prop.table(table(sample(voters, 28044)))[2])2

hist(samples_voters)1

• Nearly all of the simulated sample proportions fall between  and .

• How unusual would it be to observe that  of voters in a sample favour Leave?

0.49 0.51
48.8%
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Sampling Distribution
• Sample statistic (e.g. sample mean) is itself a random variable.

• Each sample gives its own sample mean.

• Sampling distribution is a probability distribution that assigns probabilities to

values that a statistic can take.

• E.g. sampling distribution of a sample mean, sampling distribution of a sample

proportion, etc.

• Sampling distribution helps us predict how close our sample statistic is to the

population parameter we estimate.

• Each sample statistic has a sampling distribution.
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Sampling Distribution of Sample
Mean
• Sample mean  is a random variable.𝑌

• For random samples it varies around the population mean .𝜇𝑌

• The mean of the sampling distribution of  equals .𝑌 𝜇𝑌

• Standard error is the standard deviation of the sampling distribution of 𝑌

=𝜎𝑌
𝜎
𝑛√

• Sampling distribution of a sample mean is a normal distribution with mean  and

standard error .

𝜇
𝜎𝑌

• Note that the larger the sample size , the smaller is the standard error.𝑛

• In other words, our estimate of population mean gets more precise.
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Central Limit Theorem
• For random sampling with large sample sizes, the sampling distribution of the

sample mean is approximately a normal distribution.

• Central Limit Theorem (CLT) applies no matter what the shape of the population

distribution is.

• How large the sample size  must be depends on how skewed or irregular the

population distribution is.

𝑛

• If the population distribution is bell-shaped than the sampling distribution is bell-

shaped for all sample sizes.

• CLT can be proved mathematically, but we will verify it by looking at an

illustration of a simulation.
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Central Limit Theorem
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Confidence Intervals
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Interval estimates
• A point estimate is our best guess about the population parameter.

• However, we want to be able to assess how good (accurate) our point estimate is.

• We know that a sampling distribution for a large enough sample size is

approximately normal.

• And we know where the probability mass of a normal distribution lies.

• Hence, we can calculate an interval estimate around our point estimate.
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Confidence Interval
• Confidence interval is an interval around the point estimate where the population

parameter is believed to fall.

• Probability that our estimator produces an interval that contains the parameter is

called confidence level.

• This number is chosen to be close to : 1 0.95, 0.99, 0.999
• The form of the confidence interval is:

CI = Point estimate  ±  Margin of error

25



Example: Sampling Distribution
for UK EU Refendum Poll
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Confidence Interval for Proportions
• Numerically, confidence interval is point estimate  margin of error.±
• Margin of error is some multiple (a z-score) of a standard error.

• For  confidence level margin of error is 95% ±1.96𝜎

• For proportions:

= =𝜎𝜋 ̂ 
𝜎
𝑛√

𝜋(1 − 𝜋)
𝑛

‾ ‾‾‾‾‾‾‾‾
√

• Where  is a population proportion and  (pi-hat) is our estimate of it.𝜋 𝜋 ̂ 
• For variables where we code category of interest as  and  otherwise,  is just

sample mean.

1 0 𝜋 ̂ 
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Example: Confidence Interval for
UK EU Referendum
• In the BES survey the sample proportion of Leave voters was  ( ).0.488 = 0.488𝜋 ̂ 
•  confidence interval would, thus, be: 95% ± 1.96𝜋 ̂  𝜎𝜋 ̂ 

• And =𝜎𝜋 ̂  𝜋(1 − 𝜋)/𝑛‾ ‾‾‾‾‾‾‾‾‾√
• But as we don’t actually know population parameter , we substitute it with our

sample estimate :

𝜋
𝜋 ̂ 

𝑠 = = = 0.003𝑒𝜋 ̂ 
(1 − )𝜋 ̂  𝜋 ̂ 

𝑛
‾ ‾‾‾‾‾‾‾‾

√ 0.488(0.512)
28044

‾ ‾‾‾‾‾‾‾‾‾‾‾‾
√

• Then, a 95% confidence interval is:

± 1.96𝑠 = 0.488 ± 1.96(0.003) = 0.488 ± 0.006 or [0.482, 0.494]𝜋 ̂  𝑒𝜋 ̂ 
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Example: Confidence Interval for
UK EU Referendum
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Hypothesis Testing
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Hypothesis Testing
• This part is critical to this module - you will be expected to perform at least one

hypothesis test for your research paper.

• Using theory, you will be formulating a hypothesis of the form, , or the

variation in  can be explained by the variation in .

• But how can we test that using data?

• We use what is know in statistics as classical hypothesis testing.

• This approach is based on proof by contradiction.

• We are formulating two hypothesis (null hypothesis and alternative hypothesis)

and using the collected data to calculate statistics and reject the null hypothesis.

𝑋 → 𝑌
𝑌 𝑋
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The Lady Tasting Tea
• One of the scientists at an early 1920s agricultural station in England, Dr Muriel

Bristol, claims to be able to distinguish whether the milk or the tea had been

poured into the cup first.

• To test this claim (hypothesis) dubious colleagues set up an experiment:

▪ They arrange 8  (4 of each type) in random order

▪ Dr Bristol correctly identified all 4  into which the milk was poured first

• How much evidence is this for Dr Bristol’s claim?

• Chances of guessing all 4 correctly are ≈ 0.014 or 1.4%1
70

• This looks implausible…

Source

Fisher (1935)
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Example: Hypotheses in UK EU
Referendum
• We are interested in finding out whether the true population proportion of pro-

Leave voters is different from  (null hypothesis).0.5
• We can formulate several different alternative hypothesis:

▪ population proportion is not :  (two-sided)0.5 ≠ 0.5𝐻𝑎

▪ population proportion is smaller than :  (one-sided)0.5 < 0.5𝐻𝑎

▪ population proportion is larger than :  (one-sided)0.5 > 0.5𝐻𝑎

• Null hypothesis and alternative hypothesis are formulated at the same time.

• This determines the type of a statistical test.

• How likely are to be observe the value in our sample data given the null

hypothesis is true?
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Example: Hypothesis Testing in UK
EU Referendum
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Hypothesis
• Hypothesis is a statement about the population.

• E.g. UK voters are equally likely to support Leave or Remain.

• We formulate two hypothesis:

▪  - null hypothesis (e.g. no difference, no association)𝐻0

▪  - alternative hypothesis (there is a difference/association)𝐻𝑎

• Alternative hypotheses can be one-sided or two-sided:

▪ one-sided: the direction of difference/association is included

▪ two-sided: no direction of difference/association is hypothesised
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Significance Test
• Significance test is used to summarize the evidence about a hypothesis.

• It does so by comparing the our estimates with those predicted by a null

hypothesis.

• 5 components of a significance test:

▪ Assumptions: scale of measurement, randomization, population distribution,

sample size

▪ Hypotheses: null  and alternative  hypothesis𝐻0 𝐻𝑎

▪ Test statistic: compares estimate to those under 𝐻0

▪ P-value: weight of evidence against , smaller  indicate stronger evidence𝐻0 𝑃

▪ Conclusion: decision to reject or fail to reject .𝐻0
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Example: Hypothesis Testing in UK
EU Referendum
• Assumptions: categorical scale, random sample

• Hypotheses (two-sided):

▪ : = 0.5𝐻0 𝜋𝐿𝑒𝑎𝑣𝑒

▪ : ≠ 0.5𝐻𝑎 𝜋𝐿𝑒𝑎𝑣𝑒

• Conclusion:

▪ Calculated  confidence interval  does not include 95% [0.482, 0.494] 0.5
▪ Thus, we can reject the .𝐻0

▪ In the population the proportion of pro-Leave voters does not equal  at

 level.

0.5
𝑝 < 0.05
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Example: What is the P-value in UK
EU Referendum?
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Example: What is the P-value in UK
EU Referendum?
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Example: What is the P-value in UK
EU Referendum? (two-sided)
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Example: What is the P-value in UK
EU Referendum? (two-sided)
• We can use R to calculate the area under the normal curve.

pnorm(-4)1

[1] 3.167124e-05

• As we need the area under both ends:

pnorm(-4) * 21

[1] 6.334248e-05

• Recall our discussion of scientific notation:

Which is equivalent to 

6 * 10 ^ -51

[1] 6e-05

6 × = = = 0.0000610−5 6
105

6
100000

41

file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/04_lecture_hypo.html?print-pdf


Example: What is the P-value in UK
EU Referendum? (two-sided)
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Example: Significance Test in UK
EU Referendum
• Assumptions: categorical scale, random sample

• Hypotheses (two-sided):

▪ : = 0.5𝐻0 𝜋𝐿𝑒𝑎𝑣𝑒

▪ : ≠ 0.5𝐻𝑎 𝜋𝐿𝑒𝑎𝑣𝑒

• Test statistic:

𝑧 = = = −4−𝜋 ̂  𝜋𝐻0

𝜎𝜋 ̂ 

0.488 − 0.5
0.003

• P-value: 𝑝 = 0.00006
• Conclusion:

▪ Reject the .𝐻0

▪ In the population the proportion of pro-Leave voters does not equal  at 

level.

0.5 𝑝 < 0.001
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Error Types
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Next

• Workshop:

▪ Data Frames

• Next week:

▪ Analysis of Proportions and Means
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