Week 5: Analysis of Proportions and Means

POP88162 Introduction to Quantitative Research Methods

Tom Paskhalis

Department of Political Science, Trinity College Dublin

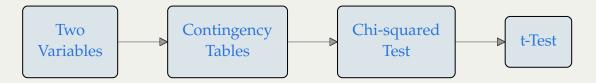
So Far

- *Sampling distributions* of population distributions of any shape approximate *normal distributions*.
- Confidence intervals describe how certain we are about the point estimates of population parameters.
- For hypothesis testing we formulate null and alternative hypotheses.
- We collect the data and calculate the test statistic to try to reject the null hypothesis.
- *P-value* based on calculated test statistic describes the weight of evidence against the null.

Topics for Today

- More hypothesis testing
- Joint probability distribution
- Conditional probability distribution
- Contingency table
- χ^2 test
- *t*-test

Today's Plan



Review: Hypothesis

- **Hypothesis** is a statement about the population.
- E.g. UK voters are equally likely to support Leave or Remain.
- We formulate two hypothesis:
 - H_0 null hypothesis (typically, 0, indicating no difference/association)
 - H_a alternative hypothesis (there is a difference/association)
- Alternative hypotheses can be *one-sided* or *two-sided*:
 - **one-sided**: the direction of difference/association is included
 - two-sided: no direction of difference/association is hypothesised

Review: Significance Test

- **Significance test** is used to summarize the evidence about a hypothesis.
- It does so by comparing the our estimates with those predicted by a null hypothesis.
- 5 components of a significance test:
 - Assumptions: scale of measurement, randomization, population distribution, sample size
 - **Hypotheses**: null H_0 and alternative H_a hypothesis
 - **Test statistic**: compares estimate to those under H_0
 - **P-value**: weight of evidence against H_0 , smaller P indicate stronger evidence
 - **Conclusion**: decision to reject or fail to reject H_0 .

Error Types

		Null hypothesis (H₀) is		
		True	False	
Decision about	Don't reject	Correct inference (true negative) (probability = 1-α)	Type II Error (false negative) (probability = β)	
Null hypothesis (H ₀) Reject		Type I Error (false positive) (probability = α)	Correct inference (true positive) (probability = 1-β)	

When Do We Reject H_0 ?

- If the observed value of a test statistic is unlikely to occur by chance (given the null hypothesis)
- How low is very low?
- It depends on a chosen **confidence level**.
- Common levels are 0.95, 0.99 and 0.999.
- Alternatively, we can present it as **error probability** (α alpha):

Confidence Level = $1 - \text{Error Probability} = 1 - \alpha$

- With corresponding values of α : 0.05, 0.01 and 0.001.
- Remember, α -level indicates the accepted probability of committing Type I error.

Type I vs Type II Errors

- There is a trade-off between minimising Type I and Type II errors.
- As α -level (probability of Type I error) goes down, β -level (probability of Type II error) goes up.
- In other words, the harder it gets to reject H_0 , the less likely we are to reject it even it is false.
- Choosing an lpha-level of 0.05 implies that we will falsely reject H_0 5% of the time under repeated sampling.
- Choosing an α -level of 0.01 implies that we will falsely reject H_0 1% of the time under repeated sampling.

Two Random Variables

Two Random Variables

- So far we discussed one random variable at a time.
- But most interesting questions in social sciences describe the relationships between two (or more) different variables.
- Recall, that our hypothesis would typically be:
 - Y is associated with X, or $X \to Y$
 - Y is associated with X conditional on Z, or $X \to Y : Z$
- In order to answer these question we need to understand the concept of **joint probability distribution** and **conditional probability distribution**.

Joint Probability Distribution

- For discrete variables, **joint probability distribution** describes the probability that two random variables (e.g. X and Y) simultaneously take some values (e.g. x and y).
- The probabilities of all possible combinations sum up to 1.
- Recall how we can write the probability of one random variable:

$$P(Y = y)$$

• For two random variables we can express their joint probability function as:

$$P(Y = y, X = x)$$

Conditional Probability Distribution

- For discrete variables, **conditional probability distribution** describes the probability of one variable (e.g. Y) taking different values, conditional on another random variable (e.g. X) having a specific value (e.g. x).
- The conditional probability of Y taking on some value y, when X takes values of x can then be expressed as:

$$P(Y = y | X = x)$$

• This probability is a joint probability of Y taking a value of y and X a value of x divided by the probability of X taking a value of x:

$$P(Y = y | X = x) = \frac{P(Y = y, X = x)}{P(X = x)}$$

Contingency Tables

Example: Brexit Referendum Poll

- Instead of looking at aggregate proportion of pro-Leave vs pro-Remain voters let's examine the distribution of those across 2 major parties: Conservative and Labour.
- We want to know whether there is an association between the party vote in 2015 General Election and support for leaving the EU in 2016 referendum.
- Or, in the language of probability theory whether the conditional distribution of EU referendum vote is different depending on party support in 2015 General Election (GE).

$$P(Y_{EU_2016} = y | X_{GE_2015} = x)$$

- Or, plugging in the chosen values of x:
 - $P(Y_{EU_2016} = y | X_{GE_2015} = Conservative)$ is the probability of some EU referendum choice given the vote for Conservatives in 2015 GE.
 - $P(Y_{EU_2016} = y | X_{GE_2015} = Labour)$ is the probability of some EU referendum choice given the vote for Labour in 2015 GE.

Fieldhouse et al. (2016), Hobolt (2016)

Contingency Table

- Two and more categorical variables tabulated together can be shown as a **contingency table** (or **crosstab** from **crosstab**ulation).
- The number of rows represents the number of levels for one categorical variable (X_{GE_2015}) .
- The number of columns represents the number of levels for another categorical variable ($Y_{EU\ 2016}$).

		EU Referendum Vote		
		Leave	Remain	Total
Party Support	Conservative	4289	2729	7018
in 2015 GE	Labour	2112	4782	6894
	Total	6401	7511	13912

Joint Probability Distribution for Contingency Table

• Joint probability distribution describes relative frequencies of occurrences of different combinations of values:

$$P(Y_{EU_2016} = y, X_{GE_2015} = x)$$

		EU Referendum Vote		
		Leave	Remain	Total
Party Support in 2015 GE	Conservative	30.8% (4289)	19.6% (2729)	50.5% (7018)
	Labour	15.2% (2112)	34.4% (4782)	49.5% (6894)
	Total	46% (6401)	54% (7511)	100% (13912)

Conditional Probability Distribution for Contingency Table

• Conditional probability distribution describes sample data distribution of EU referendum vote *conditional on* vote in 2015 GE:

$$P(Y_{EU_2016} = y | X_{GE_2015} = x)$$

		EU Referendum Vote		
		Leave	Remain	Total
Party Support in 2015 GE	Conservative	61.1% (4289)	38.9% (2729)	100% (7018)
	Labour	30.6% (2112)	69.4% (4782)	100% (6894)
	Total	100% (6401)	100% (7511)	13912

Marginal Distributions

• In crosstabs row and column totals are called **marginal distributions**.

		EU Referendum Vote		
		Leave	Remain	Total
Party Support in 2015 GE	Conservative	30.8% (4289)	19.6% (2729)	50.5% (7018)
	Labour	15.2% (2112)	34.4% (4782)	49.5% (6894)
	Total	46% (6401)	54% (7511)	100% (13912)

Now Let's Set Up a Test!

• Null hypothesis:

 H_0 : In the population vote choice in 2015 UK GE is independent from (has no association with) vote in 2016 UK EU membership referendum.

• Alternative hypothesis:

 H_a : In the population vote choice in 2015 UK GE is associated with vote in 2016 UK EU membership referendum.

- ullet Let's ask ourselves, what would we expect to see in our data if our H_0 was true?
- And does our data look like that?

If Our Null Hypothesis Was True...

		EU Referendum Vote		
		Leave	Remain	Total
Party Support	Conservative	46% (3229)	54% (3789)	100% (7018)
in 2015 GE	Labour	46% (3172)	54% (3722)	100% (6894)
	Total	46% (6401)	54% (7511)	13912

- The cells of this contingency table show **expected frequencies** under H_0 .
- Note that row percentages for each party are equivalent to the marginal distribution of votes in the EU referendum.

...but This Is What We See

		EU Referendum Vote		
		Leave	Remain	Total
Party Support	Conservative	61% vs 46% (4289) (3229)	39% vs 54% (2729) (3789)	100% (7018)
in 2015 GE	Labour	31% vs 46% (2112) (3172)	69% vs 54% (4782) (3722)	100% (6894)
	Total	46% (6401)	54% (7511)	13912

- The cells of this contingency table show **observed frequencies** as the first percentage (value).
- And the expected frequency (under the null hypothesis) as a second.

How Did We Calculate Expected Frequencies?

• Expected frequencies are a product of row and column totals for that cell, divided by the sample size.

$$f_e = \frac{total_{row} \times total_{column}}{n}$$

• For example to calculate the expected number of Conservative voters in 2015 GE choosing Leave under H_0 :

$$f_e = \frac{7018 \times 6401}{13912} = 3229$$

Chi-squared Test

χ^2 Test Statistic

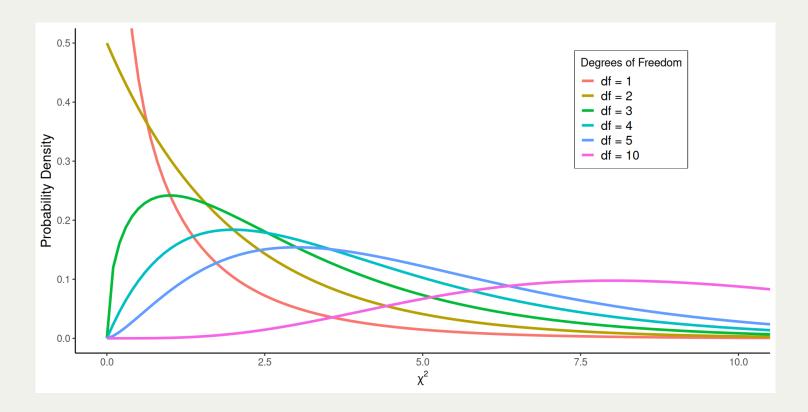
- We can use expected and observed frequencies to calculate a special statistic.
- Denoted by χ^2 , it is called the **chi-squared statistic**.
- It summarises how close expected frequencies fall to observed frequencies:

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

- The summation is taken over cells in contingency table.
- ullet The larger the value of χ^2 , the greater the evidence against H_0 : independence.
- This is the oldest test statistic in use today (introduced by Karl Pearson in 1900)

χ^2 Distribution

- χ^2 (chi-squared) distribution
- Recall how under Central Limit Theorem sampling distribution approximates normal.
- But for contingency table we only observe the cell frequencies.



Degrees of Freedom

- The only parameter describing the shape of a χ^2 distribution (technically, $\mu = df$ and $\sigma = \sqrt{2df}$).
- The higher the number of the degrees of freedom, the more the distribution is shift to the right, the larger the spread and the more it resembles a bell-shaped curve.
- How many cells can we fill as we like?

		EU Refere	ndum Vote	
		Leave	Remain	Total
Party Support in 2015 GE	Conservative			7018
	Labour			6894
	Total	6401	7511	13912

- The only parameter describing the shape of a χ^2 distribution (technically, $\mu=df$ and $\sigma=\sqrt{2df}$)
- The higher the number of the degrees of freedom, the more the distribution is shift to the right, the larger the spread and the more it resembles a bell-shaped curve.
- How many cells can we fill as we like?

		EU Referendum Vote		
		Leave	Remain	Total
Party Support in 2015 GE	Conservative	3229		7018
	Labour			6894
	Total	6401	7511	13912

• Well, one

- The only parameter describing the shape of a χ^2 distribution (technically, $\mu=df$ and $\sigma=\sqrt{2df}$)
- The higher the number of the degrees of freedom, the more the distribution is shift to the right, the larger the spread and the more it resembles a bell-shaped curve.
- How many cells can we fill as we like?

		EU Referendum Vote		
		Leave	Remain	Total
Party Support in 2015 GE	Conservative	3229	3789	7018
	Labour			6894
	Total	6401	7511	13912

Once we know the value in one, other must be filled with a particular value.				

- The only parameter describing the shape of a χ^2 distribution (technically, $\mu=df$ and $\sigma=\sqrt{2df}$)
- The higher the number of the degrees of freedom, the more the distribution is shift to the right, the larger the spread and the more it resembles a bell-shaped curve.
- How many cells can we fill as we like?

		EU Referendum Vote		
		Leave	Remain	Total
Party Support	Conservative	3229	3789	7018
in 2015 GE	Labour	3172		6894
	Total	6401	7511	13912

• Once we know the value in one, other must be filled with a particular value.

- The only parameter describing the shape of a χ^2 distribution (technically, $\mu=df$ and $\sigma=\sqrt{2df}$)
- The higher the number of the degrees of freedom, the more the distribution is shift to the right, the larger the spread and the more it resembles a bell-shaped curve.
- How many cells can we fill as we like?

		EU Referendum Vote		
		Leave	Remain	Total
Party Support in 2015 GE	Conservative	3229	3789	7018
	Labour	3172	3722	6894
	Total	6401	7511	13912

• Once we know the value in one, other must be filled with a particular value.

Degrees of Freedom

• In general, when applying χ^2 -test to a contingency table with r rows and c columns:

$$df = (r-1)(c-1)$$

- For example, for a 2×3 table, r = 2 and c = 3.
- Thus, $df = 1 \times 2 = 2$

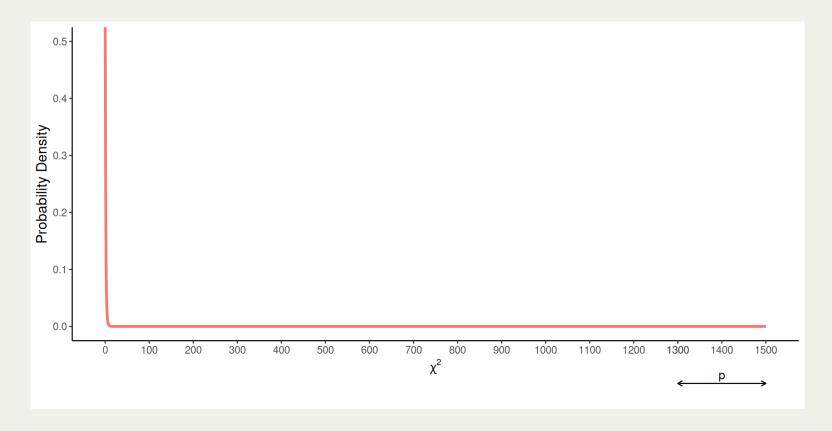
χ^2 Significance Testing

• Let's work out the χ^2 test statistic for the party vote in 2015 UK GE and preferences in 2016 EU membership referendum.

$$\chi^{2} = \sum \frac{(f_{o} - f_{e})^{2}}{f_{e}} = \frac{(4289 - 3229)^{2}}{3229} + \frac{(2729 - 3789)^{2}}{3789} + \frac{(2112 - 3172)^{2}}{3172} + \frac{(4782 - 3722)^{2}}{3722} \approx \frac{1300}{1300}$$

• And the number of the degrees of freedom is 1.

How Likely are We to Observe this Value?



Very, very unlikely!

```
1 1 - pchisq(1300, df = 1)
[1] 0
```

What Conclusion Do We Make?

- With p < 0.001 we can reject the null hypothesis of no association between party vote in 2015 UK GE and vote choice in 2016 EU membership referendum at 0.1%-level.
- We can, thus, conclude that there is an association between these 2 variables in the population.
- In R we can carry out a χ^2 test by using chisq.test() function:

```
1 chisq.test(hobolt2016$vote_2015, hobolt2016$vote_eu)
Pearson's Chi-squared test with Yates' continuity correction
```

data: hobolt2016\$vote_2015 and hobolt2016\$vote_eu
X-squared = 1299.3, df = 1, p-value < 2.2e-16</pre>

Advantages of χ^2 -test

- It's really simple virtually no modelling assumptions at all.
- It works for any number of rows and/or columns, as long as the sample is relatively large.
- What does "relatively large" mean? At least 5 observations per cell. Otherwise, the sample statistic won't necessarily approximate a χ^2 distribution.

Disadvantages of χ^2 -test

- Note that χ^2 -test provides no indication about the strength of the association.
- An association can be statistically significant, but substantively inconsequential.
- Indeed, it may not even tell you the **direction** of the relationship, if that concept even makes sense (which it might not).

Statistical Tests

Statistical Tests

		Dependent Variable	
		Nominal/ Ordinal	Interval
Independent Variable	Nominal/ Ordinal	χ² (chi-squared) test	Mean comparison test
	Interval	Logistic Regression	Linear Regression

Difference in Means

- Oftentimes, we are interested in the difference between means in two groups.
 - Is women's income lower than men's income?
 - Do democracies last longer than autocracies?
- Let's denote one group as $Y_{X=0}$ and another group as $Y_{X=1}$.
- We are then interested in making inference about the difference:

$$\bar{Y}_{X=0} - \bar{Y}_{X=1}$$

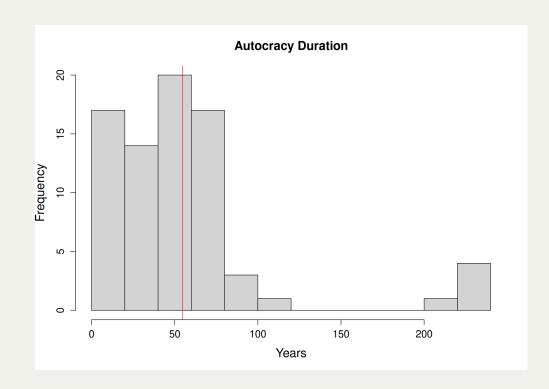
Example: Regime Longevity in 2020

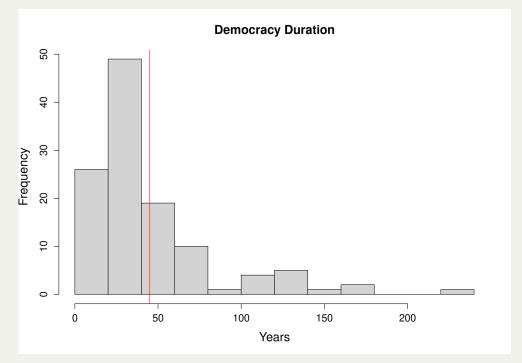
Plot

Code

Plot

Code





(i) Source

Boix, Miller and Rosato (2013), (2020)

Now Let's Set Up a Test

• Null hypothesis:

$$H_0: \bar{Y}_{X=autocracy} = \bar{Y}_{X=democracy}$$

or

$$H_0: \bar{Y}_{X=autocracy} - \bar{Y}_{X=democracy} = 0$$

• Alternative hypothesis:

$$H_a: \bar{Y}_{X=autocracy} \neq \bar{Y}_{X=democracy}$$

- We will be testing out hypothesis at α -level of 0.05
- Recall the connection between confidence intervals and hypothesis testing.

Confidence Interval for Mean Difference

• For independent random samples from 2 groups that have normal probability distribution, a confidence interval is:

$$(\bar{Y}_{X=0} - \bar{Y}_{X=1}) \pm t(se)$$

• Where *t* is a t-score and standard error *se*:

$$se = \sqrt{\frac{s_{X=0}^2}{n_{X=0}} + \frac{s_{X=1}^2}{n_{X=1}}}$$

t-test Statistic

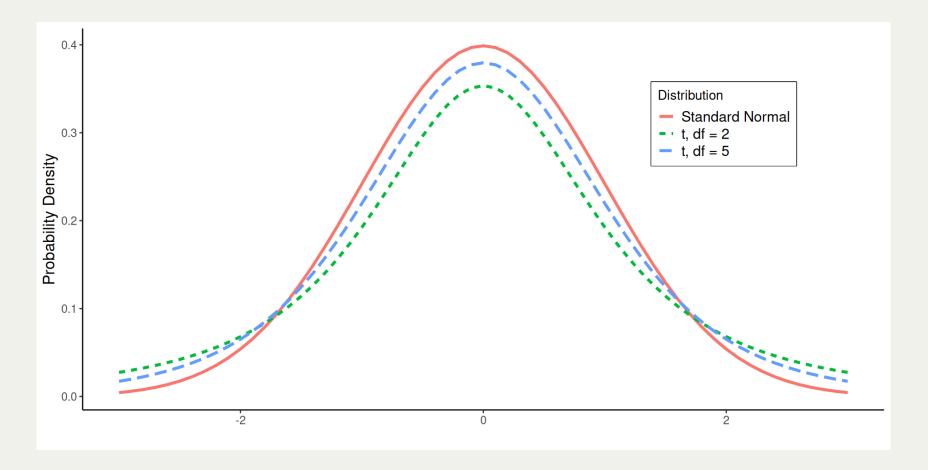
- Instead of calculating CIs, we can directly calculate a test statistic.
- Denoted by *t*, it is referred to as **t-test**.
- More specifically, for the difference in means (for a null hypothesis of no difference) it is:

$$t = \frac{\bar{Y}_{X=0} - \bar{Y}_{X=1}}{se_{\bar{Y}_{X=0} - \bar{Y}_{X=1}}} = \frac{\bar{Y}_{X=0} - \bar{Y}_{X=1}}{\sqrt{\frac{s_{X=0}^2}{n_{X=0}} + \frac{s_{X=1}^2}{n_{X=1}}}}$$

- Where $s_{X=0}^2$ and $s_{X=1}^2$ are sample variances for 2 groups.
- And $n_{X=0}$ and $n_{X=1}$ are the number of observations for each of the groups.

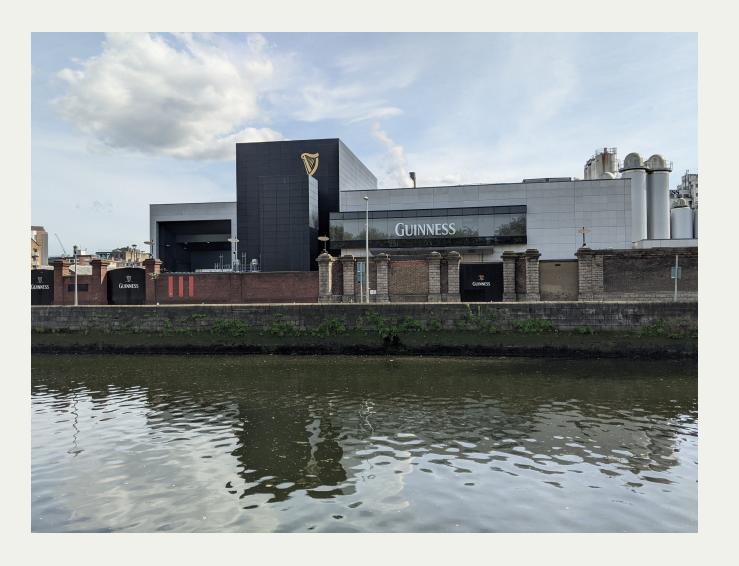
t Distribution

- t distribution is bell shaped and and symmetric around the mean of 0.
- In comparison to standard normal distribution the standard error is a bit larger than 1 and depends on the degrees of freedom.



Origins of Student-t Distribution

• Developed by William Gosset (under the pseudonym 'Student') while working at:



Degrees of Freedom

- The formula for the degrees of freedom for Student's *t*-distribution (often just called a *t*-distribution) is rather complex.
- Usually, it falls somewhere between $(n_{X=0}-1)+(n_{X=1}-1)$ and the minimum of $(n_{X=0}-1)$ and $(n_{X=1}-1)$.
- It is best left to R to correctly identify the degrees of freedom.

Example: Carrying Out t-test

• Let's work out the *t*-test statistic for the difference in longevity between autocracies and democracies.

$$t = \frac{\bar{Y}_{X=0} - \bar{Y}_{X=1}}{\sqrt{\frac{s_{X=0}^2}{n_{X=0}} + \frac{s_{X=1}^2}{n_{X=1}}}} \approx \frac{54.61 - 45.05}{\sqrt{\frac{2498.004}{77} + \frac{1521.604}{118}}} = \frac{9.56}{6.73} = \frac{1.42}{1.42}$$

• Recall,
$$\sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}}$$
 and $\hat{\sigma} = s^2 = \frac{\sum_{i=1}^{n} (Y_i - Y)^2}{n-1}$

• For large sample sizes *t*-distribution approximates standard normal:

```
1 (1 - pnorm(1.42)) * 2
[1] 0.1556077
```

What Conclusion Do We Make?

- \bullet The probability of observing this difference under the null hypothesis is $\approx .158$
- Thus, we cannot reject the null hypothesis of no difference in longevity between autocracies and democracies at 5%-level.
- In R we can carry out a *t*-test by using t.test() function:

```
1 t.test(democracy_2020$democracy_duration ~ democracy_2020$democracy)

Welch Two Sample t-test

data: democracy_2020$democracy_duration by democracy_2020$democracy
t = 1.4198, df = 134.61, p-value = 0.158
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
    -3.75709 22.87617
sample estimates:
mean in group 0 mean in group 1
    54.61039    45.05085
```

Next

- Workshop:
 - Factor Variables
- R Assignment 2 due:
 - 08:59 Tuesday, 25 February
- Next week:
 - Correlation