Week 6: Correlation

POP88162 Introduction to Quantitative Research Methods

Tom Paskhalis

Department of Political Science, Trinity College Dublin

So Far

- *Sampling distributions* of population distributions of any shape approximate *normal distributions*.
- Confidence intervals describe how certain we are about the point estimates of population parameters.
- For hypothesis testing we formulate null and alternative hypotheses.
- We collect the data and calculate the test statistic to try to reject the null hypothesis.
- *P-value* based on calculated test statistic describes the weight of evidence against the null.
- χ^2 and *t*-test are examples of statistical tests for cases where our independent variable is categorical.

Topics for Today

- Scatterplot
- Logarithmic transformation
- Covariance
- Correlation
- Slope of the Regression Line

Today's Plan

Review: Significance Test

- **Significance test** is used to summarize the evidence about a hypothesis.
- It does so by comparing the our estimates with those predicted by a null hypothesis.
- 5 components of a significance test:
 - Assumptions: scale of measurement, randomization, population distribution, sample size
 - **Hypotheses**: null H_0 and alternative H_a hypothesis
 - **Test statistic**: compares estimate to those under H_0
 - **P-value**: weight of evidence against H_0 , smaller P indicate stronger evidence
 - Conclusion: decision to reject or fail to reject H_0 .

Review: Error Types

		Null hypothesis (H₀) is	
		True	False
Decision about Null hypothesis (H ₀)	Don't reject	Correct inference (true negative) (probability = 1-α)	Type II Error (false negative) (probability = β)
	Reject	Type I Error (false positive) (probability = α)	Correct inference (true positive) (probability = 1-β)

Review: Statistical Tests

		Dependent Variable	
		Nominal/ Ordinal	Interval
Independent Variable	Nominal/ Ordinal	χ² (chi-squared) test	Mean comparison test
	Interval	Logistic Regression	Linear Regression

Two Random Variables

Moving Beyond Categorical X

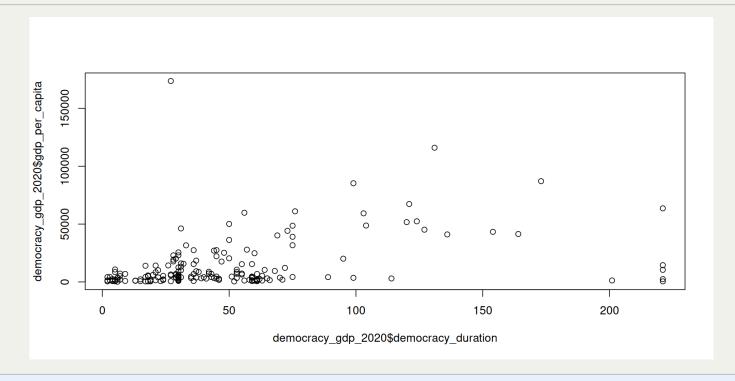
- So far, statistical tests for data, where our independent variable *X* is categorical (nominal/ordinal).
- But how can we measure and test the levels of association between quantitative variables?
- Three principal ways of measuring such association are:
 - Covariance
 - Correlation coefficient
 - Slope of a regression line
- At their core all these measures assume that 2 variables are related <u>linearly</u>.

Visualising Quantitative Data: Scatterplot

- Graphical plot which shows 2 quantitative (interval) variables alongside each other is called a **scatterplot**.
- It can be thought of as analogous to contingency table but for quantitative variables.
- It is an excellent tool for exploring bivariate (i.e. between 2 variables) relationships in quantitative data.
- We can think of variable on x-axis as our X and variable on y-axis as our Y.
- Many relationships between quantitative variables can be revealed just by plotting them against each other.

Example: Regime Longevity and GDP in 2020

- 1 democracy_gdp_2020 <- read.csv("../data/democracy_gdp_2020.csv")</pre>
- 2 plot(democracy_gdp_2020\$democracy_duration, democracy_gdp_2020\$gdp_per_capita)



(i) Source

World Bank, Boix, Miller and Rosato (2013), (2020)

Logarithmic Transformation

- Logarithmic transformation offers a convenient way of dealing with highly-skewed variables.
- In addition it offers a way to model non-linear relationships between two variables.
- They serve a lot of other important purposes in mathematics ans statistics, but we will focus on these two use cases for data analysis.

Benoit (2011)

Quick Primer on Logarithms

- Logarithm is the power to which the *base* should be raised to equal a given number.
- Or, to put it mathematically:

$$a^b = x$$
$$log_a x = b$$

- $log_a x$ is pronounced as "the logarithm of x to base a".
- We can think of a logarithm $log_a x$ as an inverse of exponentiation a^b .
- Some common bases include 2, 10 and e (2.71828...).

Logarithms in R

- We can use ^ operator in R to raise a given number to any power (exponentiate).
- For logarithms with base e (natural logarithms) we can use exp() function.
- To get use function log() to calculate a logarithm given a number and a base.
- *Natural logarithm* (with base *e*) is the default and most commonly used base.

```
exp(b)
log(x, base = exp(1))
2 ^ b
log2(x)
10 ^ b
log10(x)
```

Logarithms: Example

5²

[1] -3

```
1 5 ^ 2
[1] 25
log_525
  1 \log(25, \text{ base} = 5)
[1] 2
  1 10 ^ -3
[1] 0.001
log_{10}0.001
  1 log10(0.001)
```

Logarithms Examples Continued

Natural logarithm: $log_e 0.001$, where $e \approx 2.71828$

Rate of change as the original variable is multiplied by 10:

```
1 log(148)
[1] 4.997212

1 log(1480)
[1] 7.299797

1 log(14800)
[1] 9.602382
```

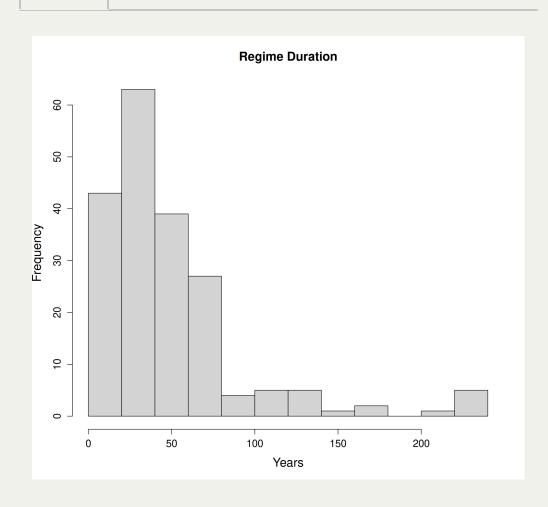
Example: Log Transformation

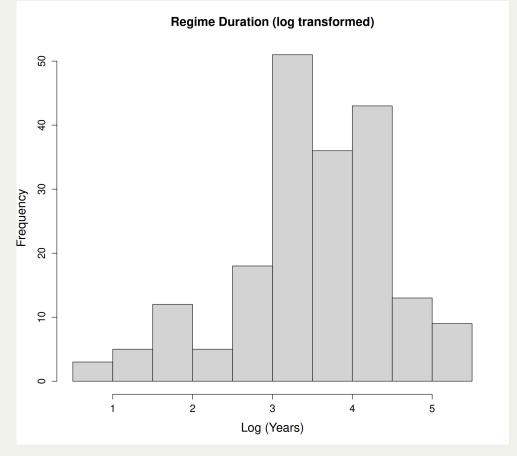
Plot

Code

Plot

Code





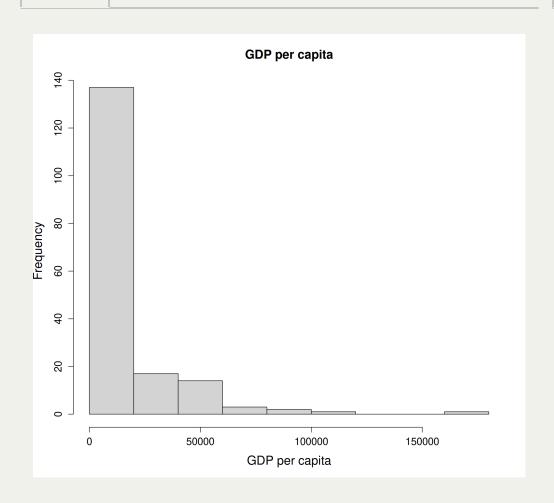
Example: Log Transformation

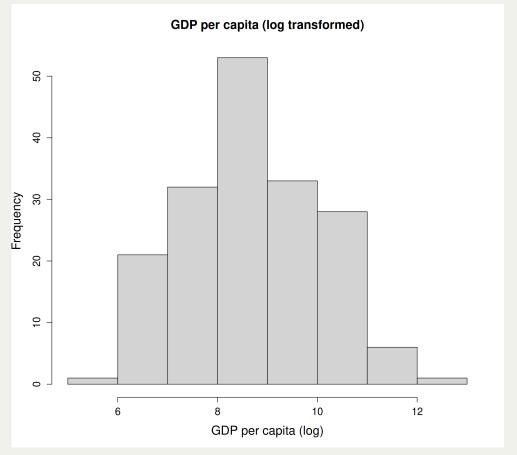
Plot

Code

Plot

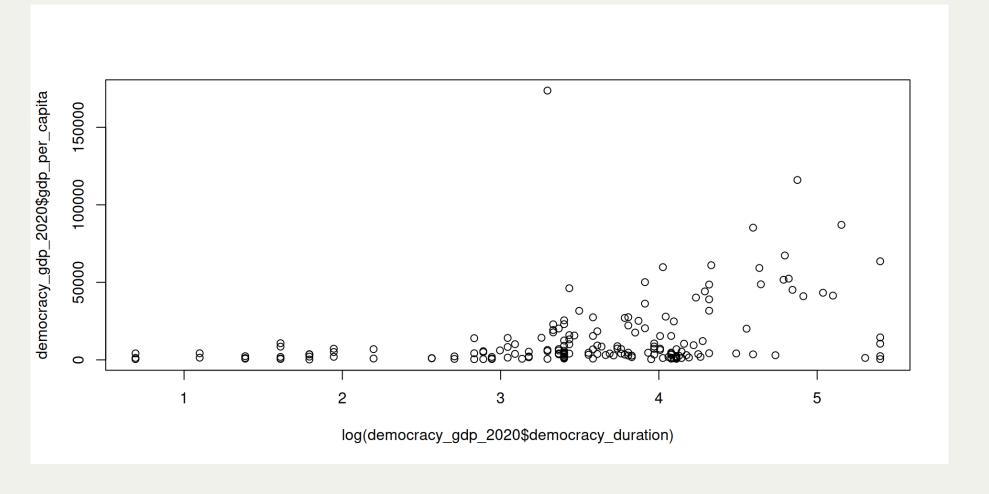
Code





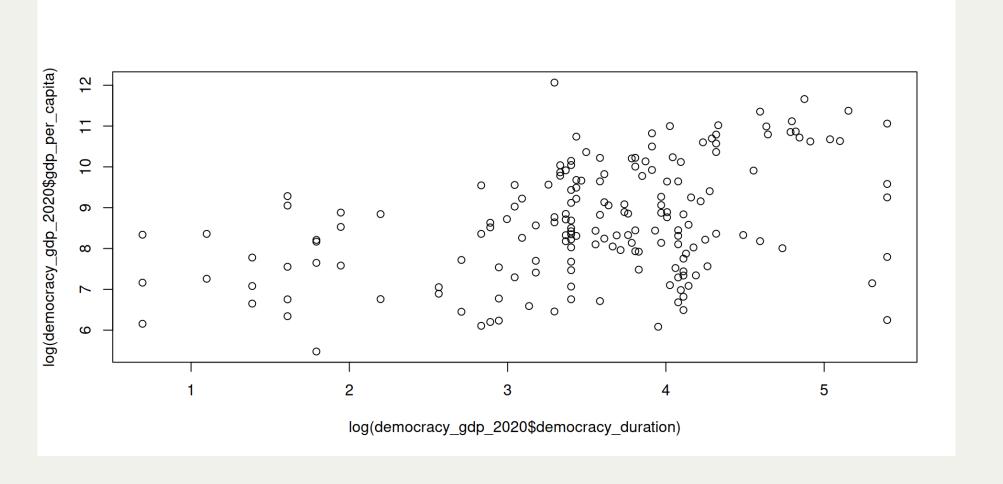
Scatterplot and Log Transformation

```
1 plot(
2 log(democracy_gdp_2020$democracy_duration),
3 democracy_gdp_2020$gdp_per_capita
4 )
```



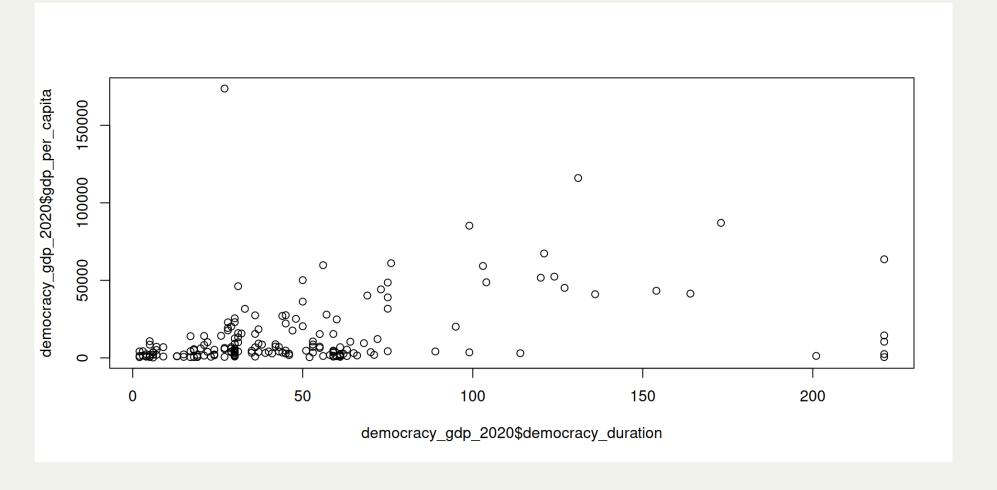
Scatterplot and Log Transformation

```
1 plot(
2 log(democracy_gdp_2020$democracy_duration),
3 log(democracy_gdp_2020$gdp_per_capita)
4 )
```



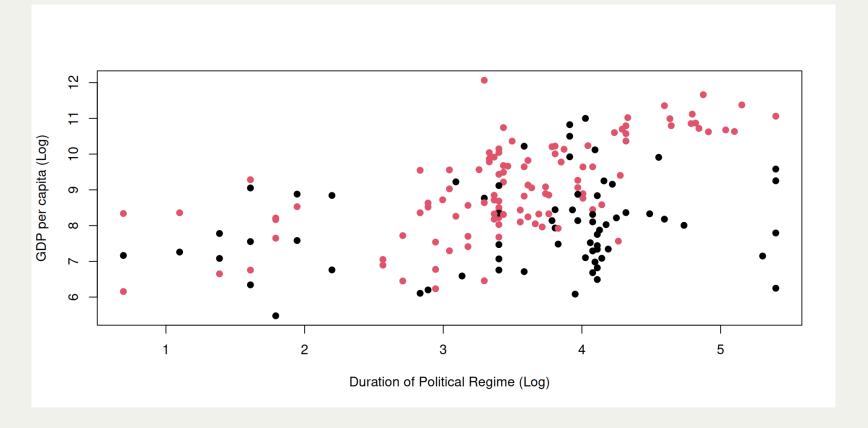
Compare To Before

```
1 plot(
2 democracy_gdp_2020$democracy_duration,
3 democracy_gdp_2020$gdp_per_capita
4 )
```



Prettifying Scatterplot

```
plot(
log(democracy_gdp_2020$democracy_duration),
log(democracy_gdp_2020$gdp_per_capita),
xlab = "Duration of Political Regime (Log)", ylab = "GDP per capita (Log)
pch = 19, col = democracy_gdp_2020$democracy + 1 # To avoid white colour
)
```



Correlation

Covariance

• Recall that the sum of all the deviations for one variable *Y* looks like this:

$$\sum_{i=1}^{n} Y_i - \bar{Y}$$

• Then, **covariance** is the average of the product of deviations of two quantitative variables:

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n}$$

- Note that if each larger-than-average X_i co-occurs with larger-than-average Y_i , and vice versa the sum will be positive, indicating <u>positive association</u>.
- If, on the contrary, each if each larger-than-average X_i co-occurs with smaller-than-average Y_i , and vice versa the sum will be negative, indicating <u>negative association</u>.

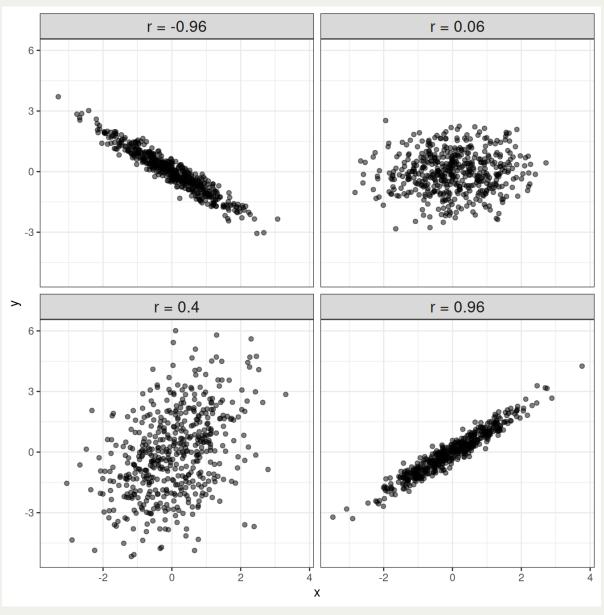
Correlation

- While the sign of the covariance has direct interpretation, its magnitude is driven by the units of measurement for *X* and *Y*.
- To standardise covariance we can divide it by the product of standard deviations of the two variables:

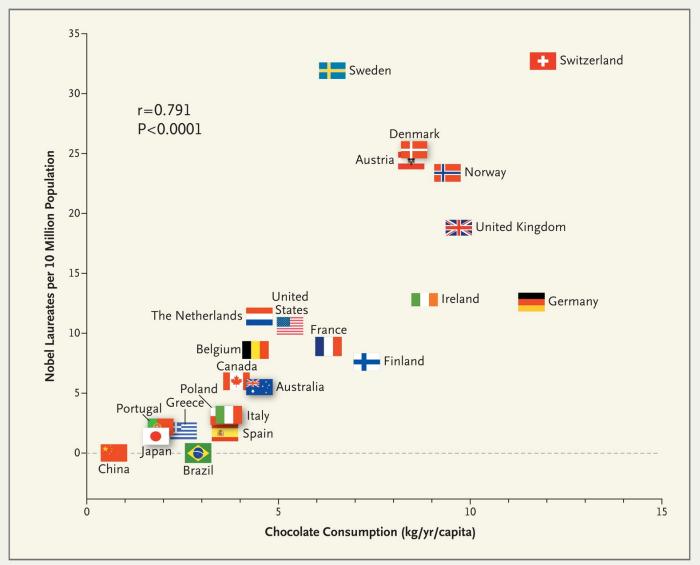
$$r = corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

- This is called a **correlation coefficient** (aka *Pearson correlation coefficient, Pearson's* r).
- It takes values between -1 and 1 (as opposed to any value potentially taken by covariance).
- A value of 0 indicates no correlation (no association).
- The larger is the absolute value of *r*, the stronger is the association between *X* and *Y*.

Direction and Magnitude



Spurious Correlation



Messerli (2012)

r^2 Statistic

- Once we estimate a correlation coefficient (aka r), we can also compute a square of it, known as r^2 statistic.
- r^2 statistic has a useful interpretation of a proportion of variation.
- As the correlation coefficient does not indicate which one of the two variables is dependent and which independent, we can say:
 - "The proportion of variation of Y explained by X is r^2 ", or
 - "The proportion of variation of X explained by Y is r^2 "
- Since $-1 \le r \le 1$, r^2 falls between 0 and 1.

Covariance and Correlation in R

• In R we can calculate covariance and correlation using cov() and cor() functions, respectively.

```
1 # Note that as with mean() function we need to take care of missing values to avoid NAs
2 cov(
3  democracy_gdp_2020$democracy_duration,
4  democracy_gdp_2020$gdp_per_capita,
5  use = "complete.obs"
6 )
[1] 370314.5
```

```
1 cor(
2  democracy_gdp_2020$democracy_duration,
3  democracy_gdp_2020$gdp_per_capita,
4  use = "complete.obs"
5 )
```

[1] 0.3667133

Covariance and Correlation in R Continued

Note that logarithmic transformation affects the estimated quantities.

```
1 cov(
2  log(democracy_gdp_2020$democracy_duration),
3  log(democracy_gdp_2020$gdp_per_capita),
4  use = "complete.obs"
5 )

[1] 0.5610533

1 cor(
2  log(democracy_gdp_2020$democracy_duration),
3  log(democracy_gdp_2020$gdp_per_capita),
4  use = "complete.obs"
5 )
```

[1] 0.416297

Statistical Inference for Correlation

- As with χ^2 test and *t*-test before, we can test the statistical significance of a correlation coefficient.
- Hypotheses:
 - Null Hypothesis $H_0: \rho = 0$ or "in the population there is no association (relationship) between X and Y"
 - Alternative Hypothesis $H_a: \rho \neq 0$ or "in the population there is an association (relationship) between X and Y"
- The test statistic for testing $H_0: \rho = 0$ is:

$$t = \frac{r}{\sqrt{(1 - r^2)/(n - 2)}}$$

Example: Inference for Regime Longevity and GDP

• Let's work out the test statistic for the correlation between regime longevity and GDP.

$$t = \frac{r}{\sqrt{(1 - r^2)/(n - 2)}} = \frac{0.3667}{\sqrt{(1 - 0.134)/(175 - 2)}} = \frac{0.3667}{0.07} \approx 5.23$$

• We can then find an associated two-tail *p*-value:

```
1 (1 - pnorm(5.23)) * 2
[1] 1.6951e-07
```

Example: Inference for Regime Longevity and GDP in R

• In R we can also carry out the entire test by using cor.test() function:

```
1 cor.test(
2  democracy_gdp_2020$democracy_duration,
3  democracy_gdp_2020$gdp_per_capita
4 )

Pearson's product-moment correlation
```

```
data: democracy_gdp_2020$democracy_duration and democracy_gdp_2020$gdp_per_capita
t = 5.1845, df = 173, p-value = 5.995e-07
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.2309328    0.4884833
sample estimates:
        cor
    0.3667133
```

Example: Significance Testing for Log Transformed Variables

• Let's see how logarithmic transformation affects our statistical inference.

0.2855905 0.5317990

sample estimates:

cor

0.416297

```
1 cor.test(
2  log(democracy_gdp_2020$democracy_duration),
3  log(democracy_gdp_2020$gdp_per_capita),
4 )

Pearson's product-moment correlation

data: log(democracy_gdp_2020$democracy_duration) and log(democracy_gdp_2020$gdp_per_capita)
t = 6.0222, df = 173, p-value = 1.005e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
```

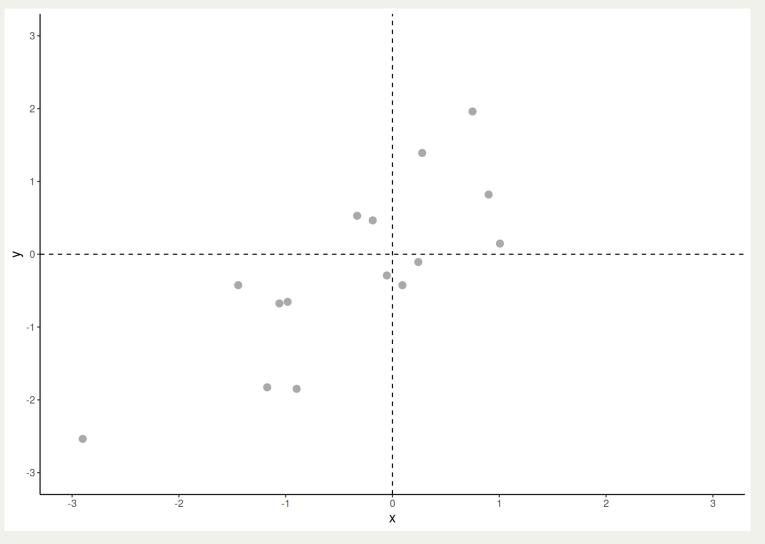
Regression Coefficient

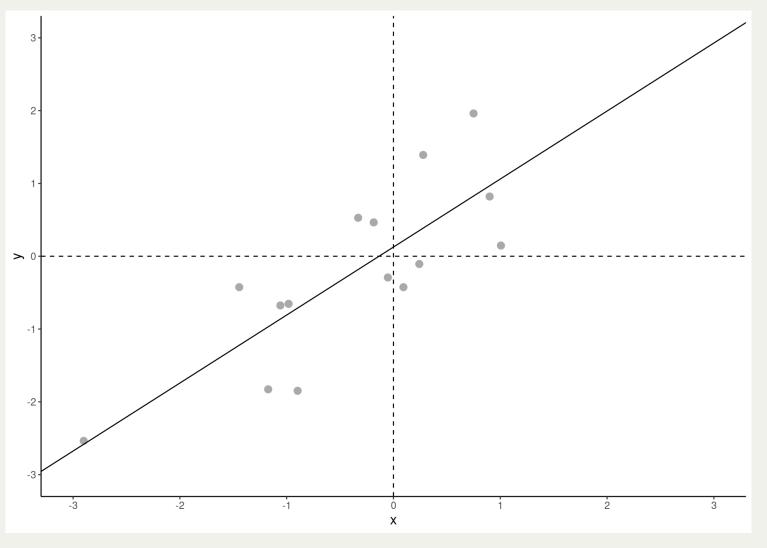
Slope of the Regression Line

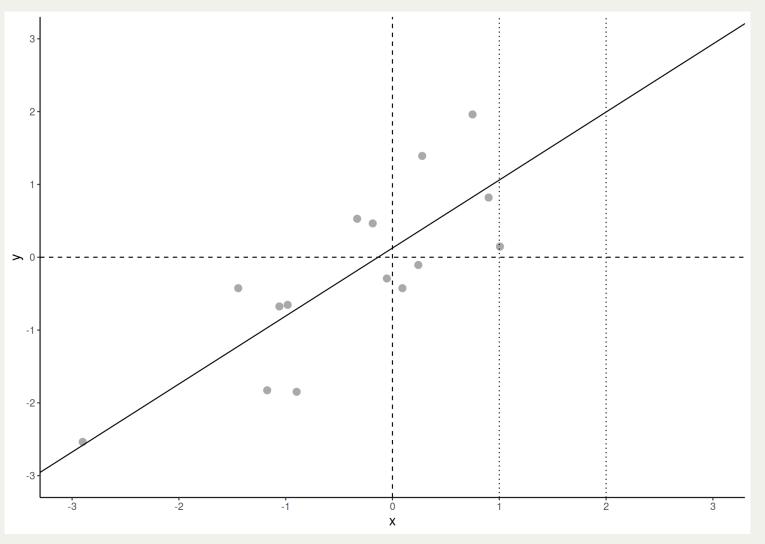
- While interesting, measure of proportion of variation given by r^2 isn't very intuitive.
- It says nothing about the substantive importance or the size of this relationship.
- Slope of the regression line (aka regression coefficient) is the most common focus when analysing relationships between quantitative variables.
- *Regression line* minimises the sum of vertical distances between data points and itself.
- It can be expressed as covariance divided by the squared standard deviations of one of the two variables:

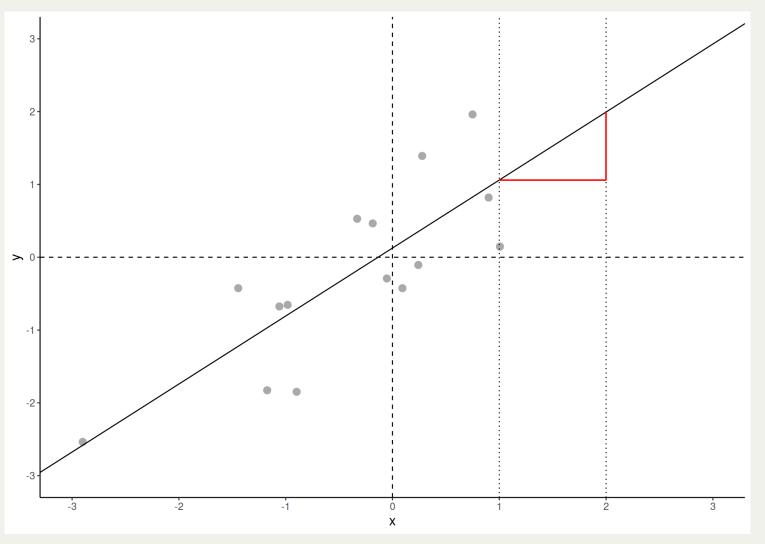
$$\beta_X = \frac{cov(X, Y)}{\sigma_X^2}$$

• Intuitively, this number tells us how much *Y* changes, on average, as *X* increases by one unit.

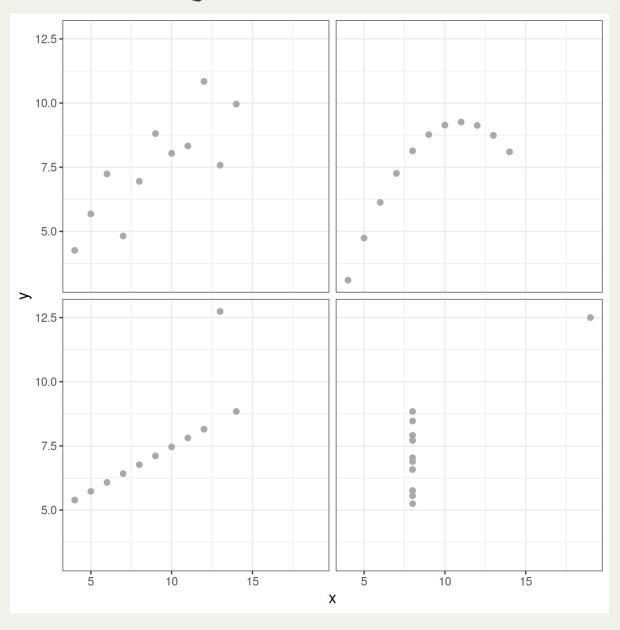




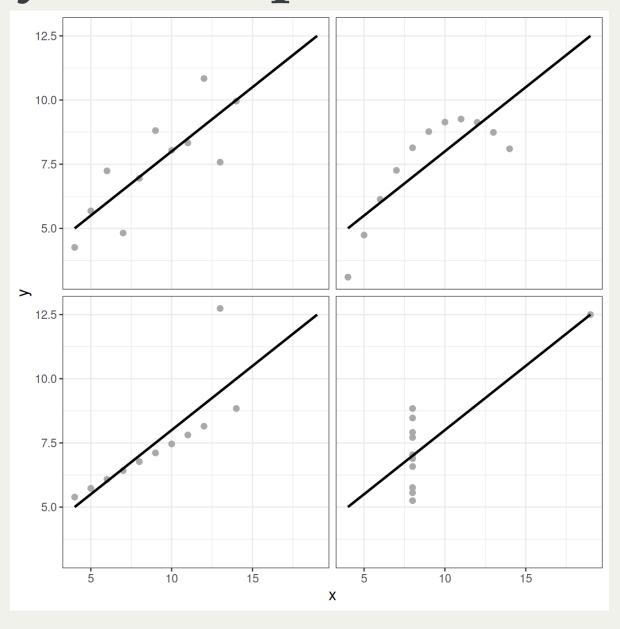




Anscombe's Quartet



Linearity Assumption



Next

- Workshop:
 - Visualisations
- Next week:
 - Reading week
- After reading week:
 - Linear regression