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Topics for Today

• Slope of the regression line

• Linear model

• Bivariate linear regression model

• Ordinary least squared method

• Testing regression coefficients
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Today’s Plan
Regression

Line

Regression

Model
Estimation

Statistical

Inference
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Previously…
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Review: Significance Test
• Significance test is used to summarize the evidence about a hypothesis.

• It does so by comparing the our estimates with those predicted by a null

hypothesis.

• 5 components of a significance test:

▪ Assumptions: scale of measurement, randomization, population distribution,

sample size

▪ Hypotheses: null  and alternative  hypothesis

▪ Test statistic: compares estimate to those under 

▪ P-value: weight of evidence against , smaller  indicate stronger evidence

▪ Conclusion: decision to reject or fail to reject .

𝐻0 𝐻𝑎

𝐻0

𝐻0 𝑃

𝐻0
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Review: Statistical Tests
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Regression Line
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Using a Line to Predict
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Using a Line to Predict

9



Linear Relationship

• The simplest way to describe the relationship between

two continuous variables is with a line.

• A straight line can be represented by this formula:

𝑌 = 𝛼 + 𝛽𝑋

•  is the intercept, the expected value of  when 𝛼 𝑌 𝑋 = 0
•  is the slope, the change in expected value of  when 

increases by one unit.

𝛽 𝑌 𝑋
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Intercept
 takes the value of  when .𝑌 0.13 𝑋 = 0
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Slope
A one unit increase in  is associated, on average, with a  increase in .𝑋 0.93 𝑌
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Regression Line
The value of  can be calculated as  plus  times the value of .𝑌 0.13 0.93 𝑋
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Varieties of Linear Relationships
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Anscombe’s Quartet

15



Linearity Assumption
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Linear Regression
Model
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Model
A simplified description of an object.

18



Statistical Model
A simplified description of relationships between variables.

Winning Election = Party + Incumbency + Campaign Spending

All models are wrong, but some are useful.

George Box
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Linear Regression Model
• We can express linear relationship (association) between two continuous variables

with bivariate linear regression model:

= 𝛼 + 𝛽 +𝑌𝑖 𝑋𝑖 𝜖𝑖

where:

• Observations 𝑖 = 1, . . . , 𝑛

•  is the dependent variable𝑌

•  is the independent variable𝑋

•  is the intercept or constant𝛼

•  is the slope𝛽

•  is the error term𝜖𝑖
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Error Term
• The relationship between real world variables is (almost) never deterministic.

• Note that other than indexing, the key difference between an equation describing a

line and an equation describing linear regression model is  (pronounced epsilon)

or error term.

𝜖

• Error term is assumed to be normally distributed and has a mean of  and

variance .

0
𝜎2
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Parameters of Regression
• Standard bivariate regression model:

has three population parameters:

= 𝛼 + 𝛽 +𝑌𝑖 𝑋𝑖 𝜖𝑖

1. intercept 𝛼

2. slope 𝛽

3. error variance 𝜎2
𝜖

•  and  can both be referred to as regression coefficients.

• In essence,  and  describe the best straight line to summarise the association,

and  describes the variation of the data around that line.

𝛼 𝛽

𝛼 𝛽
𝜎2

𝜖

22



Parameter Estimates of Regression
• We would like to know the population parameters.

• But (as usually) we do not have access to the entire population.

• Thus, we must estimate parameters of linear regression model from a sample.

• We can denote estimated linear regression model as:

= +𝑌 ̂ 𝑖 𝛼 ̂  𝛽 ̂ 𝑋𝑖

• Population vs data:

▪  population parameter values;𝛼, 𝛽, →𝜎2

▪  estimated parameter values., , →𝛼 ̂  𝛽 ̂ 𝜎𝜖̂
2
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Varying Parameters
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Example: Regime Longevity and
GDP in 2020

democracy_gdp_2020 <- read.csv("../data/democracy_gdp_2020.csv")1
plot(democracy_gdp_2020$democracy_duration, democracy_gdp_2020$gdp_per_capita)2
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Example: Linear Regression Model
• In this example the population regression model would be:

𝐺𝐷 = 𝛼 + 𝛽𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡 +𝑃𝑖 𝑦𝑖 𝜖𝑖

• As much as we would like to know the true population parameters, we are only

able to calculate their estimates.

• Thus, our estimated model is:

= + 𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝐺𝐷𝑃̂ 𝑖 𝛼 ̂  𝛽 ̂  𝑦𝑖
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Estimation of
Regression Model
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Drawing a Line
• We know from basic school geometry:

▪ How to draw a straight line through two points

▪ But how do we draw a line through more points?
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Pivotal Point
There are infinitely many lines that go through .( , )𝑋̄ 𝑌
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Residual (Error)
Residual  is the difference (vertical distance) between observed  and predicted .𝜖𝑖̂ 𝑌𝑖 𝑌𝑖̂
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Residuals
• Residual  is just one error for an -th observation.𝜖𝑖̂ 𝑖

• To calculate the size of overall error we could sum them up:

= −∑
𝑖=1

𝑛

𝜖𝑖̂ ∑
𝑖=1

𝑛

𝑌𝑖 𝑌 ̂ 𝑖

• But since residuals cancel each other out, any line going through  has:( , )𝑋̄ 𝑌

= 0∑
𝑖=1

𝑛

𝜖𝑖̂
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Residuals Continued
• Recall our discussion of variance calculation.

• We have two solutions to this problem:

▪ Summing absolute values of residuals:

| | = | − |∑
𝑖=1

𝑛

𝜖𝑖̂ ∑
𝑖=1

𝑛

𝑌𝑖 𝑌 ̂ 𝑖

▪ Summing squared residuals:

= ( −∑
𝑖=1

𝑛

𝜖𝑖̂
2

∑
𝑖=1

𝑛

𝑌𝑖 𝑌 ̂ 𝑖)2

• As with variance, for technical reasons squared residuals are easier to work with.
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Ordinary Least Squares (OLS)
• The most common method of estimating parameters of the linear regression

model is the ordinary least squares (OLS) method.

• The line that best fits the data has the smallest sum of squared errors (SSE).

• More formally a line that minimises the following expression is chosen:

𝑆𝑆𝐸 = = ( − = ( − ( + )∑
𝑖=1

𝑛

𝜖𝑖̂
2

∑
𝑖=1

𝑛

𝑌𝑖 𝑌 ̂ 𝑖)2 ∑
𝑖=1

𝑛

𝑌𝑖 𝛼 ̂  𝛽 ̂ 𝑋𝑖 )2

• SSE is also often called the residual sum of squares (RSS).
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OLS Continued
• We will use R to estimate the parameters using OLS method.

• But it can also be calculated using these formulas:

and

• Note the similarity of the numerator of the former to the formula for covariance.

=𝛽 ̂  ( − )( − )∑𝑛
𝑖=1 𝑋𝑖 𝑋̄ 𝑌𝑖 𝑌

( − )∑𝑛
𝑖=1 𝑋𝑖 𝑋̄

= −𝛼 ̂  𝑌 𝛽 ̂ 𝑋̄
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OLS Minimises SSE
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OLS Minimises SSE
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Estimand vs Estimate vs Estimator
A parameter can also be called an estimand (something that is estimated).

X (Twitter)
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Example: Ordinary Least Squares
• Now let’s estimate our  model in R:𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝑦 → 𝐺𝐷𝑃

= + 𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝐺𝐷𝑃̂ 𝑖 𝛼 ̂  𝛽 ̂  𝑦𝑖

# Note the formula syntax: Y ~ X1
lm(gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020)2

Call:
lm(formula = gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020)

Coefficients:
       (Intercept)  democracy_duration  
            5051.4               182.2  

• In other words our OLS estimate of this model is:

= 5051.4 + 182.2 × 𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝐺𝐷𝑃̂ 𝑖 𝑦𝑖

38

file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/08_lect_lm_i.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/08_lect_lm_i.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/08_lect_lm_i.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/08_lect_lm_i.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/08_lect_lm_i.html?print-pdf
file:///home/tp1587/Decrypted/Git/POP88162_Introduction_Quantitative_Research/lectures/08_lect_lm_i.html?print-pdf


Example: Fitted Regression
plot(democracy_gdp_2020$democracy_duration, democracy_gdp_2020$gdp_per_capita)1
abline(lm(gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020), col = "red")2
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Example: Interpreting OLS
Estimates
• Let’s interpret our fitted model:

= 5051.4 + 182.2 × 𝐿𝑜𝑛𝑔𝑒𝑣𝑖𝑡𝐺𝐷𝑃̂ 𝑖 𝑦𝑖

▪  - the expected GDP per capita for a state where a political regime

lasted  years is  USD.

= 5051.4𝛼 ̂ 
0 5051.4

▪  - each additional year of political regime’s longevity, on average, is

associated with a  USD increase in GDP per capita.

= 182.2𝛽 ̂ 
182.2
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Statistical Inference
for Regression
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Hypothesis Testing
• Null hypothesis:  - in the population the expected GDP per capita is not

associated with that state’s political regime longevity.

: 𝛽 = 0𝐻0

• Alternative hypothesis:  - in the population the expected GDP per

capita is associated with that state’s political regime longevity.

: 𝛽 ≠ 0𝐻𝑎

• In other words, we want to:

▪ quantify the sampling uncertainty associated with ;𝛽

▪ use  to test hypotheses such as ;𝛽 ̂  𝛽 = 0
▪ construct a confidence interval for .𝛽 ̂ 
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 Test𝑡
• The test statistic for a single regression coefficient is:

where:

𝑡 = −𝛽 ̂  𝛽𝐻0

𝜎 ̂ 𝛽 ̂ 

•  - is the estimated slope (coefficient)𝛽 ̂ 

•  - is the slope under 𝛽𝐻0 𝐻0

•  - is the standard error of 𝜎 ̂ 𝛽 ̂  𝛽 ̂ 

Note that in the very common case the null hypothesis is  the t-statistic

simplifies to 

= 0𝛽𝐻0

𝑡 = 𝛽 ̂ 
𝜎 ̂ 𝛽 ̂ 
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Sampling Distribution of OLS
Estimator
• When  is small ( ),  follows a -distribution with  degrees of freedom.

• When  is large ( ) the Central Limit Theorem implies that  will follow the

standard normal distribution.

• Most regression packages always use the  distribution as the normal distribution

is only correct for large sample sizes

𝑛 < 30 𝑡 𝑡 𝑛 − 2
𝑛 > 30 𝑡

𝑡
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Example:  Test in R𝑡
lm_fit <- lm(gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020)1
summary(lm_fit) # Use `summary()` function to get a more detailed output2

Call:
lm(formula = gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020)

Residuals:
   Min     1Q Median     3Q    Max 
-44806  -8756  -4944   4820 163717 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)         5051.44    2370.78   2.131   0.0345 *  
democracy_duration   182.22      35.15   5.185 5.99e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20900 on 173 degrees of freedom
  (20 observations deleted due to missingness)
Multiple R-squared:  0.1345,    Adjusted R-squared:  0.1295 
F-statistic: 26.88 on 1 and 173 DF,  p-value: 5.995e-07
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Example: Working Out  Test
• While the full R output contains most details, let’s see how  test was done here:

𝑡
𝑡

𝑡 = = ≈ 5.184−𝛽 ̂  𝛽𝐻0

𝜎 ̂ 𝛽 ̂ 

182.22 − 0
35.15

• As for large sample sizes -distribution approximates standard normal:𝑡

(1 - pnorm(5.184)) * 21

[1] 2.171769e-07
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What Conclusion Do We Make?
• The probability of observing this difference under the null hypothesis is

≈ 0.000000599
• Thus, we can reject the null hypothesis of no association in the population

between regime longevity and GDP at -level.0.001%
• In other words, it is very unlikely that we would observe this test-statistic if the

null hypothesis were true.
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Confidence Intervals for
Regression Coefficients
• As with other estimated parameters we can calculate confidence intervals for 

▪  Confidence interval : 

▪  Confidence interval : 

• For our regression model the  confidence interval is:

▪ Lower bound: 

▪ Upper bound: 

𝛽 ̂ 

95% ± 1.96𝛽 ̂  𝜎 ̂ 𝛽 ̂ 

99% ± 2.58𝛽 ̂  𝜎 ̂ 𝛽 ̂ 

95%
182.22 − 1.96 × 35.15 = 113.326
182.22 + 1.96 × 35.15 = 251.114
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Example: Confidence Intervals
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Next

• Workshop:

▪ RQ Presentations I

• Next week:

▪ Linear regression II
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