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Topics for Today

e Slope of the regression line

e Linear model

e Bivariate linear regression model
e Ordinary least squared method

e Testing regression coefficients
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Review: Significance Test

e Significance test is used to summarize the evidence about a hypothesis.

e [t does so by comparing the our estimates with those predicted by a null
hypothesis.

e 5 components of a significance test:

= Assumptions: scale of measurement, randomization, population distribution,
sample size

Hypotheses: null Hy and alternative H, hypothesis

Test statistic: compares estimate to those under Hy

P-value: weight of evidence against Hy, smaller P indicate stronger evidence

Conclusion: decision to reject or fail to reject Hy.



Review: Statistical Tests

X2 (chi-squared) Mean
test comparison test
Logistic Linear
Regression Regression




Regression Line




Using a Line to Predict
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Using a Line to Predict
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Linear Relationship

e The simplest way to describe the relationship between
two continuous variables is with a line.

e A straight line can be represented by this formula:
Y =a+ X

e «ais the intercept, the expected value of Y when X =0

e fis the slope, the change in expected value of Y when X
increases by one unit.
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Intercept
Y takes the value of 0.13 when X = 0.
Y =0.13+0.93X

> 0
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Slope

A one unit increase in X is associated, on average, with a 0.93 increase in Y.

Y =0.13+0.93X
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Regression Line

The value of Y can be calculated as 0.13 plus 0.93 times the value of X.

> 0

Y =0.13+0.93X
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Varieties of Linear Relationships

Y =0.13+0.93X Y =0.21 +0.55X
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Anscombe’s Quartet

12.54
10.0 1
7.5

5.0 1

>

12.54

10.0 4

7.5

5.0 1

10

15

10

15

15



Linearity Assumption
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Linear Regression
Model




Model

A simplified description of an object.
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Statistical Model

A simplified description of relationships between variables.

Winning Election = Party 4+ Incumbency + Campaign Spending

All models are wrong, but some are usetul.

George Box
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Linear Regression Model

e We can express linear relationship (association) between two continuous variables

with bivariate linear regression model:

Yl‘ = + ﬁXl + €
where;

e Observationsi =1,...,n

e Y is the dependent variable

e X is the independent variable
e ¢ is the intercept or constant
e [ is the slope

e ¢; is the error term



Error Term

e The relationship between real world variables is (almost) never deterministic.

e Note that other than indexing, the key ditference between an equation describing a
line and an equation describing linear regression model is € (pronounced epsilon)

or error term.

e Error term is assumed to be normally distributed and has a mean of 0 and

variance c2.
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Parameters of Regression

e Standard bivariate regression model:

Yl‘ = + ﬂX i + €;
has three population parameters:

1. intercept a
2. slope f

3. error variance o2

e a and f can both be referred to as regression coefficients.

e In essence, @ and f describe the best straight line to summarise the association,
and o2 describes the variation of the data around that line.
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Parameter Estimates of Regression

e We would like to know the population parameters.
e But (as usually) we do not have access to the entire population.

e Thus, we must estimate parameters of linear regression model from a sample.

e We can denote estimated linear regression model as:

A

Yl:&+ﬁXl

e Population vs data:

» a, f, 0> — population parameter values;

A p N2 :
" q,f,06, — estimated parameter values.



Varying Parameters
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Example: Regime Longevity and
GDP in 2020

democracy_gdp_2020 <- read.csv("../data/democracy_gdp_2020.csv")
plot(democracy_gdp_2020%democracy_duration, democracy_gdp_2020$gdp_per_capita)
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Example: Linear Regression Model

e In this example the population regression model would be:
GDP;, = a + fLongevity; + €;

e As much as we would like to know the true population parameters, we are only
able to calculate their estimates.

e Thus, our estimated model is:

CTDF,— =a+ ﬁLongevityi
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Estimation of
Regression Model




Drawing a Line

e We know from basic school geometry:

= How to draw a straight line through two points

= But how do we draw a line through more points?
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Pivotal Point

There are infinitely many lines that go through (X, Y).
Y




Residual (Error)

Residual é; is the difference (vertical distance) between observed Y; and predicted I/},

Y
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Residuals

. N . . . .
e Residual ¢; is just one error for an i-th observation.

e To calculate the size of overall error we could sum them up:

n n

/\ A
RPN
i=1 i=1

e But since residuals cancel each other out, any line going through (X, Y) has:

n

i=1
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Residuals Continued

e Recall our discussion of variance calculation.
e We have two solutions to this problem:

= Summing absolute values of residuals:

n n
PHEEDNI TS

i=1 i=1

» Summing squared residuals:

e As with variance, for technical reasons squared residuals are easier to work with.
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Ordinary Least Squares (OLS)

e The most common method of estimating parameters of the linear regression
model is the ordinary least squares (OLS) method.

e The line that best fits the data has the smallest sum of squared errors (SSE).

e More formally a line that minimises the following expression is chosen:
SSE=Y & = Y (- = Y (¥ - @+ hxp)
i=1 i=1 i=1

e SSE is also often called the residual sum of squares (RSS).
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OLS Continued

e We will use R to estimate the parameters using OLS method.

e But it can also be calculated using these formulas:

YL (Xi = X - Y)
2zt (Xi = X)

B =
and
d=Y — pX

e Note the similarity of the numerator of the former to the formula for covariance.



OLS Minimises SSE

SSE =8.7 SSE =14.36

v

SSE =7.41

V. =0.13+0.93X
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OLS Minimises SSE

SSE =8.7

SSE =14.36

¥, =0.2+0.33X

SSE =7.41

V. =0.13+0.93X
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Estimand vs Estimate vs Estimator

A parameter can also be called an estimand (something that is estimated).

estimand

estimate

estimator

X (Twitter)
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Example: Ordinary Least Squares

e Now let’s estimate our Longevity — G DP model in R:

G/)F,- = & + B Longevity,;

# Note the formula syntax: Y ~ X
Im(gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020)

Call:
Ilm(formula = gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020)

Coefficients:
(Intercept) democracy_duration

5051.4 182.2

e In other words our OLS estimate of this model is:

@?i = 5051.4 + 182.2 X Longevity;
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Example: Fitted Regression

plot(democracy_gdp_2020$democracy_duration, democracy_gdp_2020$gdp_per_capita)

democracy gdp_ 2020$gdp_per_capita

abline(lm(gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020), col = "red")
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Example: Interpreting OLS
Estimates

e Let’s interpret our fitted model:
GDP; = 5051.4 + 182.2 x Longevity;

= @ = 5051.4 - the expected GDP per capita for a state where a political regime
lasted O years is 5051.4 USD.

= f} = 182.2 - each additional year of political regime’s longevity, on average, is
associated with a 182.2 USD increase in GDP per capita.
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Statistical Inference
for Regression




Hypothesis Testing

e Null hypothesis: Hy : f = 0 - in the population the expected GDP per capita is not
associated with that state’s political regime longevity.

e Alternative hypothesis: H, : f # 0 - in the population the expected GDP per
capita is associated with that state’s political regime longevity.

e In other words, we want to:
= quantify the sampling uncertainty associated with g;
= use ,BA to test hypotheses such as f = 0;

= construct a confidence interval for f.
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t Test

e The test statistic for a single regression coefficient is:

where:

e i - is the estimated slope (coefficient)
e f, - is the slope under H

. 6ﬁA - is the standard error of B

Note that in the very common case the null hypothesis is fr, = 0 the t-statistic

simplifies to ¢ = f A
/
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Sampling Distribution of OLS
Estimator

e When #nis small (< 30), ¢ follows a ¢-distribution with n — 2 degrees of freedom.

e When n is large (> 30) the Central Limit Theorem implies that ¢ will follow the
standard normal distribution.

e Most regression packages always use the ¢ distribution as the normal distribution
is only correct for large sample sizes
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Example: 7 Test in R

lm_fit <- Um(gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020)
summary(lm_fit) # Use "summary()  function to get a more detailed output

Call:
Ilm(formula = gdp_per_capita ~ democracy_duration, data = democracy_gdp_2020)

Residuals:
Min 1Q Median 3Q Max
-44806 -8756 -4944 4820 163717

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5051.44 2370.78 2.131 0.0345 *
democracy_duration 182.22 35.15 5.185 5.99e-07 ***
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20900 on 173 degrees of freedom
(20 observations deleted due to missingness)

Multiple R-squared: 0.1345, Adjusted R-squared: 0.1295

F-statistic: 26.88 on 1 and 173 DF, p-value: 5.995e-07
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Example: Working Out 7 Test

e While the full R output contains most details, let’s see how ¢ test was done here:

_ b 1822220 ey

t 35.15

°p

e As for large sample sizes f-distribution approximates standard normal:

(1 - pnorm(5.184)) * 2

[1] 2.171769e-07
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What Conclusion Do We Make?

e The probability of observing this difference under the null hypothesis is
~ 0.000000599

e Thus, we can reject the null hypothesis of no association in the population
between regime longevity and GDP at 0.001%-level.

e In other words, it is very unlikely that we would observe this test-statistic if the
null hypothesis were true.
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Confidence Intervals for
Regression Coefficients

e As with other estimated parameters we can calculate confidence intervals for

= 95% Confidence interval : § + 1.96%
= 99% Confidence interval : § + 2.586;

e For our regression model the 95% confidence interval is:
= Lower bound: 182.22 — 1.96 X 35.15 = 113.326
= Upper bound: 182.22 + 1.96 x 35.15 = 251.114

48



Example: Confidence Intervals
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Next
e Workshop:

» RQ Presentations I
e Next week:

= Linear regression Il
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